191 research outputs found

    View-Based Encoding of Actions in Mirror Neurons of Area F5 in Macaque Premotor Cortex

    Get PDF
    SummaryConverging experimental evidence indicates that mirror neurons in the monkey premotor area F5 encode the goals of observed motor acts [1–3]. However, it is unknown whether they also contribute to encoding the perspective from which the motor acts of others are seen. In order to address this issue, we recorded the visual responses of mirror neurons of monkey area F5 by using a novel experimental paradigm based on the presentation of movies showing grasping motor acts from different visual perspectives. We found that the majority of the tested mirror neurons (74%) exhibited view-dependent activity with responses tuned to specific points of view. A minority of the tested mirror neurons (26%) exhibited view-independent responses. We conclude that view-independent mirror neurons encode action goals irrespective of the details of the observed motor acts, whereas the view-dependent ones might either form an intermediate step in the formation of view independence or contribute to a modulation of view-dependent representations in higher-level visual areas, potentially linking the goals of observed motor acts with their pictorial aspects

    Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions

    Get PDF
    Repetitive presentation of the same visual stimulus entails a response decrease in the action potential discharge of neurons in various areas of the monkey visual cortex. It is still unclear whether this repetition suppression effect is also present in single neurons in cortical premotor areas responding to visual stimuli, as suggested by the human functional magnetic resonance imaging literature. Here we report the responses of 'mirror neurons' in monkey area F5 to the repeated presentation of action movies. We find that most single neurons and the population at large do not show a significant decrease of the firing rate. On the other hand, simultaneously recorded local field potentials exhibit repetition suppression. As local field potentials are believed to be better linked to the blood-oxygen-level-dependent (BOLD) signal exploited by functional magnetic resonance imaging, these findings suggest caution when trying to derive conclusions on the spiking activity of neurons in a given area based on the observation of BOLD repetition suppression

    Properties of Contextual Memory Formed in the Absence of αCaMKII Autophosphorylation

    Get PDF
    The alpha-isoform of calcium/calmodulin-dependent kinase II (αCaMKII) is a major synaptic kinase that undergoes autophosphorylation after NMDA receptor activation, switching the kinase into a calcium-independent activity state. This αCaMKII autophosphorylation is essential for NMDA receptor-dependent long-term potentiation (LTP), induced by a single tetanus, in hippocampal area CA1 and in neocortex. Furthermore, the αCaMKII autophosphorylation is essential for contextual long-term memory (LTM) formation after a single training trial but not after a massed training session. Here, we show that in the absence of αCaMKII autophosphorylation contextual fear conditioning is hippocampus dependent and that multi-tetanus-dependent late-LTP cannot be induced in hippocampal area CA1. Furthermore, we show that in the absence of αCaMKII autophosphorylation contextual LTM persists for 30 days, the latest time point tested. Additionally, contextual, but not cued, LTM formation in the absence of αCaMKII autophosphorylation appears to be impaired in 18 month-old mice. Taken together, our findings suggest that αCaMKII autophosphorylation-independent plasticity in the hippocampus is sufficient for contextual LTM formation and that αCaMKII autophosphorylation may be important for delaying age-related impairments in hippocampal memory formation. Furthermore, they propose that NMDA receptor-dependent LTP in hippocampal area CA1 is essential for contextual LTM formation after a single trial but not after massed training. Finally, our results challenge the proposal that NMDA receptor-dependent LTP in neocortex is required for remote contextual LTM

    Age-dependent changes in autophosphorylation of alpha calcium/calmodulin dependent kinase II in hippocampus and amygdala after contextual fear conditioning

    Get PDF
    The hippocampus and amygdala are essential brain regions responsible for contextual fear conditioning (CFC). The autophosphorylation of alpha calciumcalmodulin kinase II (αCaMKII) at threonine-286 (T286) is a critical step 3 implicated in long-term potentiation (LTP), learning and memory. However, the changes in αCaMKII levels with aging and training in associated brain regions are not fully understood. Here, we studied how aging and training affect the levels of phosphorylated (T286) and proportion of phosphorylated:total αCaMKII in the hippocampus and amygdala. Young and aged mice, naïve (untrained) and trained in CFC, were analysed by immunohistochemistry for the levels of total and phosphorylated αCaMKII in the hippocampus and amygdala. We found that two hours after CFC training, young mice exhibited a higher level of phosphorylated and increased ratio of phosphorylated:total αCaMKII in hippocampal CA3 stratum radiatum. Furthermore, aged untrained mice showed a higher ratio of phosphorylated:total αCaMKII in the CA3 region of the hippocampus when compared to the young untrained group. No effect of training or aging were seen in the central, lateral and basolateral amygdala regions, for both phosphorylated and ratio of phosphorylated:total αCaMKII. These results show that aging impairs the training-induced upregulation of autophosphorylated (T286) αCaMKII in the CA3 stratum radiatum of the hippocampus. This indicates that distinct age-related mechanisms underlie CFC that may rely more heavily on NMDA receptor-dependent plasticity in young age

    Effects of low-dose gestational tcdd exposure on behavior and on hippocampal neuron morphology and gene expression in mice

    Get PDF
    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and toxic environmental pollutant. Gestational exposure to TCDD has been linked to cognitive and motor deficits, and increased incidence of autism spectrum disorder (ASD) traits in children. Most animal studies of these neurodevelopmental effects involve acute TCDD exposure, which does not model typical exposure in humans.publishedVersio

    Angular Distribution of Auger Electrons Emitted through the Resonant Transfer and Excitation Process Following O⁵⁺+He Collisions

    Get PDF
    This Letter reports the first measurements of the angular distribution of Auger electrons emitted from the decay of the (1s2s2p2)3D O4+** doubly excited state formed predominantly through resonant transfer and excitation (RTE) in collisions of 13-MeV O5+ projectiles with He. The (1s2s2p2)3D angular distribution is strongly peaked along the beam direction, in agreement with recent calculations of the RTE angle-dependent impulse approximation. Furthermore, interference effects between the RTE and the elastic target direct-ionization channels are observed

    Electron-Electron Interactions in Transfer and Excitation in F⁸⁺ →₂ Collisions

    Get PDF
    We have measured projectile Auger electrons emitted after collisions of H-like F with H2. The cross sections for emission of KLL, KLM, KLN, and KLO Auger electrons show maxima as a function of the projectile energy. One maximum in the KLL emission cross section is due to resonant transfer and excitation. A second maximum in the cross section for KLL emission as well as the maxima in the emission cross section for the higher-n Auger electrons are attributed to a new transfer and excitation process. This involves excitation of a projectile electron by one target electron accompanied by the capture of a second target electron

    Double Excitation of He by Fast Ions

    Get PDF
    Autoionization of He atoms following double excitation by electrons, protons, CQ+ (Q=4-6), and FQ+ (Q=7-9) ions has been studied. The electron-emission yields from the doubly excited 2s2(1S), 2s2p(1P), and 2p2(1P) states were measured at the reduced projectile energy of 1.5 MeV/nucleon for observation angles between 10°and 60°. The results indicate excitation to the 2s2(1S) and 2p2(1D) states increases as approximately Q3, while excitation to the 2s2p(1P) state varies as approximately Q2, where Q is the charge of the projectile. These charge dependences are significantly less than the Q4 dependence expected in the independent-electron model, suggesting the interaction between the two target electrons is important in creating the doubly excited states

    The Notch intracellular domain represses CRE-dependent transcription

    Get PDF
    AbstractMembers of the cyclic-AMP response-element binding protein (CREB) transcription factor family regulate the expression of genes needed for long-term memory formation. Loss of Notch impairs long-term, but not short-term, memory in flies and mammals. We investigated if the Notch-1 (N1) exerts an effect on CREB-dependent gene transcription. We observed that N1 inhibits CREB mediated activation of cyclic-AMP response element (CRE) containing promoters in a γ-secretase-dependent manner. We went on to find that the γ-cleaved N1 intracellular domain (N1ICD) sequesters nuclear CREB1α, inhibits cAMP/PKA-mediated neurite outgrowth and represses the expression of specific CREB regulated genes associated with learning and memory in primary cortical neurons. Similar transcriptional effects were observed with the N2ICD, N3ICD and N4ICDs. Together, these observations indicate that the effects of Notch on learning and memory are, at least in part, via an effect on CREB-regulated gene expression

    Memory Acquisition and Retrieval Impact Different Epigenetic Processes that Regulate Gene Expression

    Get PDF
    Background: A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. Results: We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. Conclusions: We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a necessary step for the analysis of genome-wide transcriptional studies in the context of brain and behavior. We show for the first time that histone variants are downregulated after memory acquisition, and splicing factors and microRNAs after memory retrieval. Our results provide mechanistic insights into the molecular basis of cognition by highlighting the differential involvement of epigenetic mechanisms, such as histone variants and post-transcriptional RNA regulation, after acquisition and retrieval of memory
    corecore