3,955 research outputs found

    Intermediate representation for retargetable optimizing compliers

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (leaf 71).by Duncan G. Bryce.S.B.and M.Eng

    Scaling and innovation platforms

    Get PDF

    Concentrating Membrane Proteins Using Asymmetric Traps and AC Electric Fields

    Get PDF
    Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a “nested trap” and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins

    Developing learning approaches for livestock feeds

    Get PDF

    Liquid interactions with porous media and the fate of toxic materials

    Get PDF
    Toxic liquid chemicals released into the environment may pose an imme- diate risk to human health through contact or related vapour hazards. However, they can also interact with surfaces and remain in situ, poten- tially presenting a subsequent hazard. To improve understanding of the fate of these materials in different environments, the study group inves- tigated interactions between liquid droplets and porous media across a range of different time scales. Splashing and the subsequent re-entrainment of micro-droplets into the atmosphere was identified as one possible mechanism though which the area effect of a contamination could be significantly increased. The study group looked at experimentally determined splashing thresholds for droplet impacts with impermeable substrates, to determine initial predictions of whether or not a given droplet will splash. In cases where splashing occurs the droplet inertia is the most significant effect driving the initial phase of the liquid infiltration into a porous media and the study group developed a model to investigate this behaviour. For longer time scales the study group determined that capillary suction played the most significant role in spreading the liquid within the porous medium. Models for the evolution of the partial saturation within a porous medium based on Richards’ equation were investigated. Over even longer time scales evaporation converts the liquid back into a po- tentially hazardous vapour. The study group started to incorporate evaporation into models of liquid infiltration in a porous medium in order to describe this phenomenon. Recommendations for future theo- retical, numerical and experimental modelling are also provided

    Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift

    Get PDF
    Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant Universe. Here, we model the spectral energy distributions (SEDs) of galaxies at z = 1.5--3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, LTIR/LUVL_{\text{TIR}}/L_{\text{UV}}) and UV slope (β\beta). We generalize the shape of the dust law with an empirical model, Aλ,δ=E(BV) kλ (λ/λV)δA_{\lambda,\delta}=E(B-V)\ k_\lambda\ (\lambda/\lambda_V)^\delta where kλk_\lambda is the dust law of Calzetti et al. (2000), and show that there exists a correlation between the color excess E(BV){E(B-V)} and tilt δ\delta with δ=(0.62±0.05)log(E(BV)){\delta=(0.62\pm0.05)\log(E(B-V))}+ (0.26 ± 0.02){(0.26~\pm~0.02)}. Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star-formation rate, or β\beta. The change in the dust law with color excess is consistent with a model where attenuation is caused by by scattering, a mixed star-dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher (z>3z>3) redshifts.Comment: 20 pages, 18 figures, resubmitted to Ap
    corecore