8 research outputs found

    A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts

    Full text link
    Despite continuous improvements, precipitation forecasts are still not as accurate and reliable as those of other meteorological variables. A major contributing factor to this is that several key processes affecting precipitation distribution and intensity occur below the resolved scale of global weather models. Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems, i.e., learning to add fine-scale structure to coarse images. Leinonen et al. (2020) previously applied a GAN to produce ensembles of reconstructed high-resolution atmospheric fields, given coarsened input data. In this paper, we demonstrate this approach can be extended to the more challenging problem of increasing the accuracy and resolution of comparatively low-resolution input from a weather forecasting model, using high-resolution radar measurements as a "ground truth". The neural network must learn to add resolution and structure whilst accounting for non-negligible forecast error. We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps. Our model compares favourably to the best existing downscaling methods in both pixel-wise and pooled CRPS scores, power spectrum information and rank histograms (used to assess calibration). We test our models and show that they perform in a range of scenarios, including heavy rainfall.Comment: Submitted to JAMES 4/4/2

    Machine learning emulation of 3D cloud radiative effects

    Get PDF
    Abstract: The treatment of cloud structure in numerical weather and climate models is often greatly simplified to make them computationally affordable. Here we propose to correct the European Centre for Medium‐Range Weather Forecasts 1D radiation scheme ecRad for 3D cloud effects using computationally cheap neural networks. 3D cloud effects are learned as the difference between ecRad's fast 1D Tripleclouds solver that neglects them and its 3D SPARTACUS (SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides) solver that includes them but is about five times more computationally expensive. With typical errors between 20% and 30% of the 3D signal, neural networks improve Tripleclouds' accuracy for about 1% increase in runtime. Thus, rather than emulating the whole of SPARTACUS, we keep Tripleclouds unchanged for cloud‐free parts of the atmosphere and 3D‐correct it elsewhere. The focus on the comparably small 3D correction instead of the entire signal allows us to improve predictions significantly if we assume a similar signal‐to‐noise ratio for both

    Bridging observations, theory and numerical simulation of the ocean using machine learning

    Get PDF
    Progress within physical oceanography has been concurrent with the increasing sophistication of tools available for its study. The incorporation of machine learning (ML) techniques offers exciting possibilities for advancing the capacity and speed of established methods and for making substantial and serendipitous discoveries. Beyond vast amounts of complex data ubiquitous in many modern scientific fields, the study of the ocean poses a combination of unique challenges that ML can help address. The observational data available is largely spatially sparse, limited to the surface, and with few time series spanning more than a handful of decades. Important timescales span seconds to millennia, with strong scale interactions and numerical modelling efforts complicated by details such as coastlines. This review covers the current scientific insight offered by applying ML and points to where there is imminent potential. We cover the main three branches of the field: observations, theory, and numerical modelling. Highlighting both challenges and opportunities, we discuss both the historical context and salient ML tools. We focus on the use of ML in situ sampling and satellite observations, and the extent to which ML applications can advance theoretical oceanographic exploration, as well as aid numerical simulations. Applications that are also covered include model error and bias correction and current and potential use within data assimilation. While not without risk, there is great interest in the potential benefits of oceanographic ML applications; this review caters to this interest within the research community

    Global Simulations of the Atmosphere at 1.45 km Grid-Spacing with the Integrated Forecasting System

    No full text
    Global simulations with 1.45 km grid spacing are presented that were performed using the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Simulations are uncoupled (without ocean, sea ice, or wave model), using 62 or 137 vertical levels and the full complexity of weather forecast simulations is presented, including recent date initial conditions, real-world topography, and state-of-the-art physical parametrizations, as well as diabatic forcing including shallow convection, turbulent diffusion, radiation and five categories for the water substance (vapor, liquid, ice, rain, and snow). Simulations are evaluated with regard to computational efficiency and model fidelity. Scaling results are presented, which were performed on the fastest supercomputer in Europe, Piz Daint (Top 500, November 2018). Important choices for the model configuration at this unprecedented resolution for the IFS are discussed such as the use of hydrostatic and non-hydrostatic equations or the time resolution of physical phenomena which is defined by the length of the time step. Our simulations indicate that the IFS model—based on spectral transforms with a semi-implicit, semi-Lagrangian time stepping scheme in contrast to more local discretization techniques—can provide a meaningful baseline reference for O(1) km global simulations.ISSN:0026-116

    Model intercomparison of COSMO 5.0 and IFS 45r1 at kilometer-scale grid spacing

    No full text
    The increase in computing power and recent model developments allow for the use of global kilometer-scale weather and climate models for routine forecasts. At these scales, deep convective processes can be partially resolved explicitly by the model dynamics. Next to horizontal resolution, other aspects such as the applied numerical methods, the use of the hydrostatic approximation, and time step size are factors that might influence a model's ability to resolve deep convective processes. In order to improve our understanding of the role of these factors, a model intercomparison between the nonhydrostatic COSMO model and the hydrostatic Integrated Forecast System (IFS) from ECMWF has been conducted. Both models have been run with different spatial and temporal resolutions in order to simulate 2 summer days over Europe with strong convection. The results are analyzed with a focus on vertical wind speed and precipitation. Results show that even at around 3 km horizontal grid spacing the effect of the hydrostatic approximation seems to be negligible. However, time step proves to be an important factor for deep convective processes, with a reduced time step generally allowing for higher updraft velocities and thus more energy in vertical velocity spectra, in particular for shorter wavelengths. A shorter time step is also causing an earlier onset and peak of the diurnal cycle. Furthermore, the amount of horizontal diffusion plays a crucial role for deep convection with more diffusion generally leading to larger convective cells and higher precipitation intensities. The study also shows that for both models the parameterization of deep convection leads to lower updraft and precipitation intensities and biases in the diurnal cycle with a precipitation peak which is too early.ISSN:1991-9603ISSN:1991-959

    Deep Learning for Post-Processing Ensemble Weather Forecasts

    No full text
    Quantifying uncertainty in weather forecasts typically employs ensemble prediction systems, which consist of many perturbed trajectories run in parallel. These systems are associated with a high computational cost and often include statistical post-processing steps to inexpensively improve their raw prediction qualities. We propose a mixed prediction and post-processing model based on a subset of the original trajectories. In the model, we implement methods from deep learning to account for non-linear relationships that are not captured by current numerical models or other post-processing methods. Applied to global data, our mixed models achieve a relative improvement of the ensemble forecast skill of over 13%. We demonstrate that this is especially the case for extreme weather events on selected case studies, where we see an improvement in predictions by up to 26%. In addition, by using only half the trajectories, the computational costs of ensemble prediction systems can potentially be reduced, allowing weather forecasting pipelines to run higher resolution trajectories, and resulting in even more accurate raw ensemble forecasts

    WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting

    No full text
    Data-driven approaches, most prominently deep learning, have become powerful tools for prediction in many domains. A natural question to ask is whether data-driven methods could also be used to predict global weather patterns days in advance. First studies show promise but the lack of a common data set and evaluation metrics make intercomparison between studies difficult. Here we present a benchmark data set for data-driven medium-range weather forecasting (specifically 3–5 days), a topic of high scientific interest for atmospheric and computer scientists alike. We provide data derived from the ERA5 archive that has been processed to facilitate the use in machine learning models. We propose simple and clear evaluation metrics which will enable a direct comparison between different methods. Further, we provide baseline scores from simple linear regression techniques, deep learning models, as well as purely physical forecasting models. The data set is publicly available at https://github.com/pangeo-data/WeatherBench and the companion code is reproducible with tutorials for getting started. We hope that this data set will accelerate research in data-driven weather forecasting
    corecore