5,326 research outputs found
Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta
Rivers and turbidity currents are the two most important sediment transport processes by volume on Earth. Various hypotheses have been proposed for triggering of turbidity currents offshore from river mouths, including direct plunging of river discharge, delta mouth bar flushing or slope failure caused by low tides and gas expansion, earthquakes and rapid sedimentation. During 2011, 106 turbidity currents were monitored at Squamish Delta, British Columbia. This enables statistical analysis of timing, frequency and triggers. The largest peaks in river discharge did not create hyperpycnal flows. Instead, delayed delta-lip failures occurred 8–11 h after flood peaks, due to cumulative delta top sedimentation and tidally-induced pore pressure changes. Elevated river discharge is thus a significant control on the timing and rate of turbidity currents but not directly due to plunging river water. Elevated river discharge and focusing of river discharge at low tides cause increased sediment transport across the delta-lip, which is the most significant of all controls on flow timing in this setting
Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice
Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals,
there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death
receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival
and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic
proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To
investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1
transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional
Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the
macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was
striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells
(TCRβ+
CD4–
CD8–
B220+
) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr
mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating
autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene
by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell
population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the
development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other
haemopoietic cell types
Stability of Glutamate-Aspartate Cardioplegia Additive Solution in Polyolefin IV Bags
Objective: Glutamate-aspartate cardioplegia additive solution (GACAS) is used to enhance myocardial preservation and left ventricular function during some cardiac surgeries. This study was designed to evaluate the stability of compounded GACAS stored in sterile polyolefin intravenous (IV) bags. The goal is to extend the default USP beyond-use date (BUD) and reduce unnecessary inventory waste.
Methods: GACAS was compounded and packaged in sterile polyolefin 250 mL IV bags. The concentration was 232 mM for each amino acid. The samples were stored under refrigeration (2°C-8°C) and analyzed at 0, 1, and 2 months. At each time point, the samples were evaluated by pH measurement and visual inspection for color, clarity, and particulates. The samples were also analyzed by high-performance liquid chromatography (HPLC) for potency and degradation products. Due to the lack of ultraviolet (UV) chromophores of glutamate and aspartate, the samples were derivatized by ortho-phthalaldehyde prior to HPLC analysis.
Results: The time zero samples of GACAS passed the physical, chemical, and microbiological tests. Over 2 months of storage, there was no significant change in pH or visual appearance for any of the stability samples. The HPLC results also indicated that the samples retained 101% to 103% of the label claim strengths for both amino acids.
Conclusion: The physical and chemical stability of extemporaneously prepared GACAS has been confirmed for up to 2 months in polyolefin IV bags stored under refrigeration. With proper sterile compounding practice and microbiology testing, the BUD of this product can be extended to 2 months
Localization Transition of Biased Random Walks on Random Networks
We study random walks on large random graphs that are biased towards a
randomly chosen but fixed target node. We show that a critical bias strength
b_c exists such that most walks find the target within a finite time when
b>b_c. For b<b_c, a finite fraction of walks drifts off to infinity before
hitting the target. The phase transition at b=b_c is second order, but finite
size behavior is complex and does not obey the usual finite size scaling
ansatz. By extending rigorous results for biased walks on Galton-Watson trees,
we give the exact analytical value for b_c and verify it by large scale
simulations.Comment: 4 pages, includes 4 figure
Fractional diffusion modeling of ion channel gating
An anomalous diffusion model for ion channel gating is put forward. This
scheme is able to describe non-exponential, power-law like distributions of
residence time intervals in several types of ion channels. Our method presents
a generalization of the discrete diffusion model by Millhauser, Salpeter and
Oswald [Proc. Natl. Acad. Sci. USA 85, 1503 (1988)] to the case of a
continuous, anomalous slow conformational diffusion. The corresponding
generalization is derived from a continuous time random walk composed of
nearest neighbor jumps which in the scaling limit results in a fractional
diffusion equation. The studied model contains three parameters only: the mean
residence time, a characteristic time of conformational diffusion, and the
index of subdiffusion. A tractable analytical expression for the characteristic
function of the residence time distribution is obtained. In the limiting case
of normal diffusion, our prior findings [Proc. Natl. Acad. Sci. USA 99, 3552
(2002)] are reproduced. Depending on the chosen parameters, the fractional
diffusion model exhibits a very rich behavior of the residence time
distribution with different characteristic time-regimes. Moreover, the
corresponding autocorrelation function of conductance fluctuations displays
nontrivial features. Our theoretical model is in good agreement with
experimental data for large conductance potassium ion channels
The HST Key Project on the Extragalactic Distance Scale. XV. A Cepheid Distance to the Fornax Cluster and Its Implications
Using the Hubble Space Telescope (HST) 37 long-period Cepheid variables have
been discovered in the Fornax Cluster spiral galaxy NGC 1365. The resulting V
and I period-luminosity relations yield a true distance modulus of 31.35 +/-
0.07 mag, which corresponds to a distance of 18.6 +/- 0.6 Mpc. This measurement
provides several routes for estimating the Hubble Constant. (1) Assuming this
distance for the Fornax Cluster as a whole yields a local Hubble Constant of 70
+/-18_{random} [+/-7]_{systematic} km/s/Mpc. (2) Nine Cepheid-based distances
to groups of galaxies out to and including the Fornax and Virgo clusters yield
Ho = 73 (+/-16)_r [+/-7]_s km/s/Mpc. (3) Recalibrating the I-band Tully-Fisher
relation using NGC 1365 and six nearby spiral galaxies, and applying it to 15
galaxy clusters out to 100 Mpc gives Ho = 76 (+/-3)_r [+/-8]_s km/s/Mpc. (4)
Using a broad-based set of differential cluster distance moduli ranging from
Fornax to Abell 2147 gives Ho = 72 (+/-)_r [+/-6]_s km/s/Mpc. And finally, (5)
Assuming the NGC 1365 distance for the two additional Type Ia supernovae in
Fornax and adding them to the SnIa calibration (correcting for light curve
shape) gives Ho = 67 (+/-6)_r [+/-7]_s km/s/Mpc out to a distance in excess of
500 Mpc. All five of these Ho determinations agree to within their statistical
errors. The resulting estimate of the Hubble Constant combining all these
determinations is Ho = 72 (+/-5)_r [+/-12]_s km/s/Mpc.Comment: Accepted for publication in the Astrophysical Journal, Apr. 10 issue
28 pages, 3 tables, 12 figures (Correct figures and abstract
Over half of the far-infrared background light comes from galaxies at z >= 1.2
Submillimetre surveys during the past decade have discovered a population of
luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 <= z
<= 4, these massive submillimetre galaxies go through a phase characterized by
optically obscured star formation at rates several hundred times that in the
local Universe. Half of the starlight from this highly energetic process is
absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K
with spectral energy distributions peaking at 100 microns in the rest frame. At
1 <= z <= 4, the peak is redshifted to wavelengths between 200 and 500 microns.
The cumulative effect of these galaxies is to yield extragalactic optical and
far-infrared backgrounds with approximately equal energy densities. Since the
initial detection of the far-infrared background (FIRB), higher-resolution
experiments have sought to decompose this integrated radiation into the
contributions from individual galaxies. Here we report the results of an
extragalactic survey at 250, 350 and 500 microns. Combining our results at 500
microns with those at 24 microns, we determine that all of the FIRB comes from
individual galaxies, with galaxies at z >= 1.2 accounting for 70 per cent of
it. As expected, at the longest wavelengths the signal is dominated by
ultraluminous galaxies at z > 1.Comment: Accepted to Nature. Maps available at http://blastexperiment.info
ISO LWS Spectroscopy of M82: A Unified Evolutionary Model
We present the first complete far-infrared spectrum (43 to 197 um) of M82,
the brightest infrared galaxy in the sky, taken with the Long Wavelength
Spectrometer of the Infrared Space Observatory (ISO). We detected seven fine
structure emission lines, [OI] 63 and 145 um, [OIII] 52 and 88 um, [NII] 122
um, [NIII] 57 um and [CII] 158 um, and fit their ratios to a combination
starburst and photo-dissociation region (PDR) model. The best fit is obtained
with HII regions with n = 250 cm^{-3} and an ionization parameter of 10^{-3.5}
and PDRs with n = 10^{3.3} cm^{-3} and a far-ultraviolet flux of G_o =
10^{2.8}. We applied both continuous and instantaneous starburst models, with
our best fit being a 3-5 Myr old instantaneous burst model with a 100 M_o
cut-off. We also detected the ground state rotational line of OH in absorption
at 119.4 um. No excited level OH transitions are apparent, indicating that the
OH is almost entirely in its ground state with a column density ~ 4x10^{14}
cm^{-2}. The spectral energy distribution over the LWS wavelength range is well
fit with a 48 K dust temperature and an optical depth, tau_{Dust} proportional
to lambda^{-1}.Comment: 23 pages, 4 figures, accepted by ApJ, Feb. 1, 199
- …
