13 research outputs found

    Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics

    Full text link

    Anyon wave equations and the noncommutative plane

    Get PDF
    The ``Jackiw-Nair'' non-relativistic limit of the relativistic anyon equations provides us with infinite-component wave equations of the Dirac-Majorana-Levy-Leblond type for the ``exotic'' particle, associated with the two-fold central extension of the planar Galilei group. An infinite dimensional representation of the Galilei group is found. The velocity operator is studied, and the observable coordinates describing a noncommutative plane are identified.Comment: 11 pages, typos correcte

    Super-extended noncommutative Landau problem and conformal symmetry

    Full text link
    A supersymmetric spin-1/2 particle in the noncommutative plane, subject to an arbitrary magnetic field, is considered, with particular attention paid to the homogeneous case. The system has three different phases, depending on the magnetic field. Due to supersymmetry, the boundary critical phase which separates the sub- and super-critical cases can be viewed as a reduction to the zero-energy eigensubspace. In the sub-critical phase the system is described by the superextension of exotic Newton-Hooke symmetry, combined with the conformal so(2,1) ~ su(1,1) symmetry; the latter is changed into so(3) ~ su(2) in the super-critical phase. In the critical phase the spin degrees of freedom are frozen and supersymmetry disappears.Comment: 12 pages, references added, published versio

    Bosons, fermions and anyons in the plane, and supersymmetry

    Full text link
    Universal vector wave equations allowing for a unified description of anyons, and also of usual bosons and fermions in the plane are proposed. The existence of two essentially different types of anyons, based on unitary and also on non-unitary infinite-dimensional half-bounded representations of the (2+1)D Lorentz algebra is revealed. Those associated with non-unitary representations interpolate between bosons and fermions. The extended formulation of the theory includes the previously known Jackiw-Nair (JN) and Majorana-Dirac (MD) descriptions of anyons as particular cases, and allows us to compose bosons and fermions from entangled anyons. The theory admits a simple supersymmetric generalization, in which the JN and MD systems are unified in N=1 and N=2 supermultiplets. Two different non-relativistic limits of the theory are investigated. The usual one generalizes Levy-Leblond's spin 1/2 theory to arbitrary spin, as well as to anyons. The second, "Jackiw-Nair" limit (that corresponds to Inonu-Wigner contraction with both anyon spin and light velocity going to infinity), is generalized to boson/fermion fields and interpolating anyons. The resulting exotic Galilei symmetry is studied in both the non-supersymmetric and the supersymmetric cases.Comment: 54 pages. Typos corrected, refs updated. Published versio
    corecore