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Abstract

The “Jackiw—Nair” nonrelativistic limit of the relativistic anyon equations provides us with infinite-component wave
equations of the Dirac—Majorana—Lévy-Leblond type for the “exotic” particle, associated with the two-fold central extension of
the planar Galilei group. An infinite dimeiogial representation of the Galilei groigfound. The velocity operator is studied,
and the observable coordinates describing a noncommutative plane are identified.

0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction a (2 4+ 1)-dimensional version of Dirac’s new equa-
tion that describes relativistic anyons and usual fields

. . . of integer and half-integer spin in a unified widj.
What kind of wave equation do anyons safisfy? The This theory, briefly summarized iSection 2below,

question has haunted res_earchgrs since the begi_nningNi” be the starting point for our new developments
[1-4]. A _related_ problem is to f|r_1d a wave equation 1 ore. Using the Fock space representation, we con-
;olr d exotlclpartlcle_s[5—f7],hass|oC|ateC(;j v|v||th the two- sider two kinds of nonrelativistic limits. Both lim-

?Q cent[)a exkt1en5|on 0 tGe Iﬁ anar ailel gro_[ﬂ}.ll its yield infinite sets of first-order equations. In the
(Remember that ,e,XOt'C alear_1_symmetr_y IMPIIES * first type the spin is kept fixed and, at each step, the
the noncommutativity of the position coordina{&s new component gets a factor of L. The first two

7] and, at the classical level, can be deduced from components yield the nonrelativistic “Dirac equation”

Spi?ﬂ?”g anyons as fot”lg'_‘y ”0”’9""‘“‘”;“‘3 lirfg.) put forward by Lévy-Leblond in the sixtigd1]. The
irty years agq10] Dirac proposed a new wave ., q1iw Nair (JN) limit’ [9] vields instead a gen-

equation for particles with internal structure. Adapt- uinely infinite component systen{3.4), of “Lévy-
ing his ideas to the plane, one of us (M.P.) has derived Leblond-type” equations. These latter are invariant

with respect to the two-fold centrally extended exotic
Galilei group, whose action can be derived from the
mplyushc@lauca,usach.cl (.S, Plyushchay). Poinca.réj—.symmetry Qf the anyon. Presented in terms
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in Galilei-covariant coordinates, which describe a non-
commutative plane.

2. Wave equationsfor relativistic anyons

Let us briefly summarize the theory of anyons we
start with. It was emphasised by Jackiw and Nair
(see also[2]) that anyons, just like usual fields of
integer and half-integer spin, correspond to irreducible
representations of the planar Poincaré grdip],
labeled with two Casimir invariants, namely

(pur" + mzcz) @) =0, (2.1)
(pMJ” —smc)|l1/) =0, (2.2)

where J,, is the “spin part” of the total angular
momentum operator

T = —€umix’ p* +J,. (2.3)

The J,, together withp,, generate the (2- 1)D
Poincaré group, via the commutation relations

[x;u pvl= inuu’
[x;u xy] = [p/u pv]= [J;u xy] = [J;u pv]= 0,
[y, o] = —i€unnd ™, (2.4)

wheren,,, = diag—1, +1, +1), €9*?>=1. The choice
Ju = —3y, and s = £1/2 reducesEq. (2.2)to
the Dirac equation. Similarly, the choiq@,)?, =
—ie?,, for s = +1 leads to the topologically massive
vector field equatiorjl]. In these two cases (only),
the quadratic equatio(R.1) follows from the linear
equation(2.2).

To describe anyons for which the spin parame-
ter s can take any real value, we have to resort to
the infinite-dimensional half-bounded unitary repre-

sentations of the planar Lorentz group of the discrete ;

type seriesD; (or, D) [1,2,4] For these representa-
tions, characterized by, J* = —a(a¢ — 1) and Jo =
diagla +n) (—Jo=diaglaw +n)),a >0,n=0,1, ...,
Eq. (2.2)reduces to 42 + 1)-dimensional analog of
the Majorana equatiofiL3]. The pair ofEgs. (2.1),
(2.2) describes an anyon field with spin= « (or,
s = —a for the choice ofD; ). Here, as for usual fields
with |s| = j > 1, the Klein—Gordon equatiof2.1) is
independent of the Majorana equation.

The wave functions chosen by Jackiw and Nair
[1] (see also[3]) carry a reducible representation
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of the planar Lorentz group. Their wave equation,
(4.10), needs therefore be supplemented by further
conditions, their Egs. (4.12a) and (4.12b).

Our primary aim here is to derive a nonrelativistic
model from the relativistic anyon. This could be at-
tempted in the framework ¢i]; subsidary conditions
would lead to complications, though.

Another line of attack is provided by the “new
wave equation” proposed by Dirac in 19[2D], which
describes a particle in (3 1)D, endowed with an
internal structure. Diras’ idea has been applied to
anyons in 2+ 1 dimensiond4]: one starts with the
one-dimensional deformed Heisenberg algebra
{ai, R} =0,

(2.5)
where v is a real (deformation) parameteN =
${a*.a"} — 3(v + 1) plays the role of a number
operator,[N,a*] = +a™, allowing us to present a
reflection operator in terms ofa*: R = (—1)V =
costN. For anyv > —1, this algebra admits an
infinite-dimensional unitary representation realized on
Fock spacé.The vacuum state is distinguished by the
relation «—|0) = 0, and|n), N|n) = n|n), IS given
by |n) = C,(a™)"|0), whereC, is a normalization
coefficient. Fock space idecomposed into even and
odd subspaces defined W®ivy )L = £|¥)+, which
correspond ta even or odd. The quadratic operators

1, 4 _
Jo—4{a ,a },
generate the g@,2) Lorentz algebra, see the last
relation in (2.4). The sql,2) Casimir is J,J* =
—s(s — 1) with s = 7(1 £ v) on the even/odd sub-
spaces. The quadratic operat¢?s6), together with
the linear operators

1
1=—=( —

V2 V2
extend the Lorentz algebra into an ¢52) superal-
gebra:{L,, Lﬂ} = 4i(-])/)(xﬁ [Ju, Lol = %(Vﬂ)aﬁLﬂy
where the two-by-twoy-matrices are in the Majo-
rana representationy%),” = —(02).?, (¥ =

[af,a+]=l+vR, R2=1,

Jr=Nh+il= %(ai)z (2.6)

i

a++a7), Lo (a+—a7),

3 For negative odd integer values= —(2k + 1), k=1,2,...,
one gets finite, namel§2k + 1)-dimensional representations. Then
Egs. (2.7)describe a spin- field with j = k/2, which has states
with both signs of the energig]. From now on, we only consider
the infinite-dimensional case.
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i(0Ye?, (¥9o? =i(0%)4P. The antisymmetric ten-  (2.6)act on Fock space according to
SOr €qp, €12 = 1, provides us with a metric for the .
spinor indices(y*)as = (¥*)a”€,5. The space—time (2nlJol) = (s + m)¥n.

coordinatesx* and conjugate momentg, are in- (2n|J4|¥) =v/n(n — 1+ 25)Yn-1,
dependent from the internal variables;”, a*] = CnlJ_|1¥) = V(1 + D (n + 25)Yns1. (2.11)

[pu,a®] = 0; hence, due tq2.3), the L, form a
(2 + 1)D spinor. With all these ingredients at hand,
now we posit our linear-irp,, anyon equationgt]

Then taking into accourligs. (2.11)yields the matrix
form of (2.2), namely

(2n|ppJ* —smely) =0. (2.12)

O«l¥) =0, where
_ Eqgs. (2.9)describe therefore an infinite-component
Qo = (R(p”yu)aﬂ +meea”)Lp. 27 field of massm, whose (anyonic) spiny = 7(1 +
Since theQ, and the total angular momentum v) > 0, is fixed by the value of the deformation pa-
operator given byEgs. (2.3) and (2.6xatisfy the rameterv > —1. In the rest frame system = 0 we
relation[ 7., Qul = %(yﬂ)aﬁ Qg, (2.7)is a covariant find also that, just like for the usual Majorana equa-
spinor set of equations. (In contrast, the corresponding tion [13], the sign of the energy of those states de-
operators in2.1)and(2.2)are s@1, 2) scalars.) Inour  scribed by(2.9) is necessarily positiv§4], p° > 0.
Dirac-type approach the consistency conditions Note also that the positive energy anyonic states with
negative spin values,= —%(1 +v) < 0, can be ob-
{Qu, Op}I¥) =0 and [Qq, OpllY)=0, (2.8) tained by changing the sign before the mass term
restricted to the even subspace, imf#gs. (2.1)  mc in (2.7)and positing the 9d, 2) generators/o =
and (2.2) whereas they force the odd part to vanish —z{a".a"}, J+ = —3(a¥)% Then repeated applica-
identically, |y/)_ = O [4]. We shall restrict our con-  tion of (2.10) together withEq. (2.2)projected onto
siderations to even states henceforth. Then our wavethe vacuum state, provides us with the momentum-
functions carry an irreducible representation of the representation solution to the anygs. (2.9)
planar Lorentz group and do not necessitate therefore \/25 B+ (2tn—1

any subsidary condition. Compared to the wave func- ¥, (p) = (—1)"
tions of[1] (or, of [3]) which carry additional vector n
(spinor) indices, ours are more economical, as they % (M) Yo(p),
boil down to a scalar-like field. mc—p
An insight is gained when we writ€.7) on Fock /.0 20, =9 -

space. Expanding a¥) = >_,~q ¥ |2n) yields, for Yo(p) =8(p” — /m?c®+ p?) ¥ (p). (2.13)
eachn > 0, a pair of coupled equations which only
involve neighbouring components, namely

{ Nn+2s(me + po)¥n —vVn+1py¥ui1 =0,

Now we consider the nonrelativistic limit of our
Vi 2sp_ Vi 1(mc — =0 - .
nF2sp-yn+Vn+ Lme = poyyn1 =0, 2.9) anyon equations. For the purpose we note that, consis-

. o tently with Egs. (2.13) all components vanish in the
where py = p1 + ip2. The second equation i(2.9) rest frame, with the exception gf, which has energy
yields the recurrence relation »° = me. Then, puttingpo = —ic—19, and

Vst = — In+2s p_ . (2.10) ly) = ﬂmc ') = e~ime l2¢n|27’l
n

+1 mc—po >0
Substitution into the first equation reproduces, for the Fock-space equatiorf8.9) yield the first-order
each ¢, the Klein—Gordon equatioii2.1). (p? + system
2,2 i ;
m<“c®)y, = 0. To see that our anyon equations imply .1
also Eq. (2.2)which fixes the second (spin) Casimir V7 +25i¢™ " 0bn +n +1pi¢ni1=0,
invariant, let us first observe that the spin generators in +/n +2s p_¢, + +/n + 1(2mc — ic ™13, ) 11 =0.

n!

3. “Lévy-Leblond” equationsfor exotic particles
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We can now considewo types of nonrelativistic
limits. Firstly, let us keep the spin-fixed and let
¢ — oo. In this limit the subsequent components
get always multiplied by, ¢,.1 ~ ¢ 14,. Only
keeping terms up to order2, we are left with just
the first two equations. Callingpo = @ andc¢1 = x,
they read

ia,<p+%zp+x =0, o)
%p_¢+\/%)(20. .

These equations form already a closed system, which

generalizes froms = 1/2 to anys > 0 the two-
component“nonrelativistic” Dirac equation introduced
by Lévy-Leblond[11]. Let us emphasise that in this
“ordinary” nonrelativistic limit, relativistic spin sim-
ply becomes nonrelativistic spin, still denoted it
should be remembered, however, t{tatl) represents
only the two first leading equations in the expansion in
the small parametgip|/mc, and that the NR limit of
the anyon system of (any) spineontains, unlike for
the nonrelativistic limit of the Dirac equation, an in-
finite number of components, ~ (|p|/mc)"¢o. Re-
defining the higher-order components &g = ¢" ¢,

yields indeed
10, Pn + ) 2 P+ Pur1 =0,
n+2s (3.2)
%p7¢n + %@er =0.
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equationid;¢, = (p2/2m)¢, (cf. (2.1)). For further
discussion we observe that, grouping all “upper” and
all “lower equations” collectively(3.4) can also be
presented as

Di¢) =0, Alg) =0. (3.5)

The second equation here can be viewed as a quantum
constraint which specifies the physical subspace. It
allows us to express all components in terms of the
first one:

(€ M2 (pr—ip2\"
¢n—(— ) (z) ﬁ(T) 90,

cf. (2.13)

(3.6)

4. Exotic Galilei symmetry

Both types of our nonrelativistic systems consid-
ered above are indeed invariant under Galilean trans-
formations. The generators of Galilei boosts can be
derived from the relativistic Lorentz generators as the
¢ — oo limits of

1
K:i =—;6,'j._7j. (4.1)
Put§¢, = iéb;(2n|K;|¢), wheredb; are the trans-
formation parameters. Dropping terms a-—2) for
the (spins) Lévy-Leblond systen¢3.1) we get, using

Rather then pursuing these investigations, we focus (2 3)and(2.11)

our attention to another, more subtle limit, considered
by Jackiw and Naif9]. As spin in(2+ 1)D is a

continuous parameter, we can indeed let it diverge so

thats/c? tends to a finite limit:

¢ — 00, s — 00, — =K. (3.3)

2

8D = 6bi(mx; — tpi)P,
8x =68bi(mx; —tp;i)x —\/g((Sb1+i8b2)¢'. 4.2)

For spins = 1/2, we recover the formula of Lévy-
Leblond[11]. This representation is conventional in

Then all components remain of the same order, and We y, ot the hoosts commutg; . K;1=0.

get an infinite number of equations

n+1

i0hn + /52 Py bur1 =0,

(3.4)
%p—‘l&n + %(ﬁn-‘rl =0.

These are the first-order, infinite-component Dirac—
Majorana—Lévy-Leblondype equations we propose
to describe our free “exotic” system.

Eliminating one component shows, furthermore,

Let us stress, however, thg.1) is just ano(c—2)
truncation of an infinite-component syste(.2),
whose Galilean symmetry could be established by re-
cursion. Let us indeed posit that Galilei boosts act
on the first componendg as on a scalar, i.e., as on
@ in (4.2). Then the action on the second compo-
nent®; can be deduced seeking it in the fosah, =
aoPo + a1@1 and requiring the field equations to be
satisfied. The procedure could be continued for the

that each component satisfies the free Schrdodingernext component, etc. Explicit formulae that generalize
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(4.2) are not illuminating as they soon become rather
complicated.

Let us now identify the Galilean symmetry of the
anyon field systen(3.4), obtained by the JN limit
(3.3). The Galilean boost generatge.1), acting on
infinite-dimensional Fock space, can be found from
Egs. (2.3)and (2.18s

(2n|K1l¢) = (mx1 — 1p1)n

— i\/g(«/md)nﬂ — Vn¢n-1),
(2n|K2|¢) = (mx2 — tp2)n

+ \/g(\/m%ﬂ + Vn$n-1). (4.3)

The first, diagonal-inp,, terms here represent the or-
dinary Galilean symmetry (as for a scalar particle).
The terms which mix the componentg.1 are asso-
ciated with the “internal” structure of the system. The
remarkable feature of the boog.3) is that, owing
precisely to the internal structure, they satisfy

K1, Kol = —ik (4.4)

rather then commute. Relati¢f.4)is the hallmark of
“exotic” Galilean symmetry5,7,8], further discussed
in the next section.

To identify the generator of rotations of the system,
we note that the N limit of the relativistic angular
momentum7 (just like of the energy) divergg45].
Omitting the divergent parand taking into account
Eqg. (2.3)and the first equation frorf2.11)yields

(2n|T1¢) = (2n|Jold)renorm= (Eijxipj +n)p.

(4.5)
The internal contributiom¢, is essential for estab-
lishing the correct commutation relatiofd’, ;] =
i€ Kx.

5. Thevelocity operator

The Hamiltonian of the system is the generator
of time translations. It is convenient to introduce the
nonrelativistic counterparts of the relativistic bosonic
operators we denote (for reasons which will become
clear later) byvy. They act on “nonrelativistic” Fock
space spanned by), = |2n),n=0,1, ...,

viln)y = — /)Y 2+ Ln 4 1),
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v_|n)y = —(2/k)°nin — 1),. (5.1)

The factor —(2/k)¥/2 is included for later conve-
nience.

The operatorsy here are in fact the JN limits
of the translation invariant part of relativistic Lorentz
generators;-(c/s)J+ — vy, cf. (4.1). The IN limit of
(2n|J4 1Y) yields, e.g., by(2.11), , (n|(—c/s)J4|n —
1), - —(2/k)Y2/n, ie., (5.1). These ‘“internal”
operators span an (undeformed) Heisenberg algebra
[v_,vi]= 21 or, puttingvy = vy £ivy,

[vj, vl = —ix " tejy. (5.2)
As it follows from the relativistic relation§.4), thev;
commute with the “external” canonical coordinaigs
and momenta;, [x;, p;1 =1i8;;, [xi, x;1=[pi, pj]l =
[vi,x;]1=[vi, pj]1=0.

Any state of our system can now be decomposed
over Fock spacggp) = Zn>o¢n|”>va where the field
components, are taken either in coordinate;§, or
in momentum p;) representation. Writing the field
equations(3.4) in the form (3.5) with D = i9, —
Ipyv_, A=v_ —m 1p_, one would be tempted
to view %p+v_ as a Hamiltonian. This is, however,
not correct, a%p+v_ is not Hermitian. Our clue is
that (3.5) is equivalent to a set of equations of the
same form, but withD changed intoD — %varA.
The system of field equation8.4) can finally be
represented in the equivalent form

{D|¢) =0,
Alg) =0,

D=id —H, H:ﬁ-ﬁ—%mv+v_,
A=v_ — %p_.

(5.3)
The Hermitian operatof{ here can be identified
with the Hamiltonian of the system. On the physical
subspace defined b¥t|¢)phys= 0, ourH reduces to
the free expression,
P2

Hig)pnys= Hld)phys H ==

Thus, we recover the framework proposed [B]

on grounds of canonical quantization. Ttyeadratic
expression in5.4) comes from our eliminating,, 11
using (5.1). Note that, consistently with{5.3), the
physical states are just the coherent states of the
Heisenberg algebra corresponding to the operatoys

(5.4)

V- |¢)phys= m_lp— |¢>phys,
1
|¢)physoc e 2V P=v+|0),,
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where we have introduced the notat{d@ih

0=—.
m2

(5.5)

The generatoré4.3), (4.5) can be presented in the
form

Ki=mx; —tp; + ké€jjvj,

1
j:eijxipj+§fcv+v_. (5.6)
Let us note for further reference that
HIK_l(E,‘./']C,'pj —mJ). (5.7)

In the representatiof®.3), (5.6), we obtain the non-
trivial commutation relations of the two-fold centrally
extended Galilei grouf8], namely

[Ki, pjl=imé;j, [Ki, Kl =—ikeij,
[Ki, Hl =ip;, [T, pil =ie€ijpj,
(T, Kil=ie;K;. (5.8)

Conversely, the exotic relation®.8) fix the ad-
ditional terms in(5.6). Seeking indeed the genera-
tors of Galilei boosts and rotations in the frofia =
mx; —tp; + It and J = ¢;;x;pj + X, respectively,
where I and ¥ commute with the external opera-
tors x; and p;, the Galilei relations in(5.8) imply
that necessarilyI;, I';1 = —ike;;, i.€., thel; span a
Heisenberg algebra. Similarly, these relations also fix
Y as¥ = 4 I} + so wheresp is a constant. Call-
ing I = ke;jv; and puttingsg = 0 results in(5.6).
Our previous (infinite-dimensional) formulae can be
recovered by representing the operators on Fock
space according t5.1).

Using the nonrelativistic commutation relations
given above, the Hamiltonia®{ is seen to generate
the Heisenberg equations of motion

dx; dpi

— =V, - = Ov

dt dt

dvi m 1

d—;:;qj(vj—m pj), (59)

which is the quantum counterpart of the classical
equations studied if5,6], and can be integrated at
once to givep; (t) = const and,

xi(t) = mil(p,'t —k€ijV; (t)) + const

Vi (1) = exp(Fimi 1) V4 (0), (5.10)
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whereVy = V1 +i Vo, and

Vi=v; —m ip;. (5.11)

The noncommuting operatossdescribe therefore the
velocity of the system and, as for a Dirac particle,
the coordinates perform a “nonrelativistic Zitterbewe-
gung”. The internal variablé/; measures the extent
the momentump;, differs from [n-times] the veloc-
ity. In its terms, the operatat in (5.3) which defines
the physical-state constraintis= V_.

6. Observable coordinatesin the noncommutative
plane

According toEqg. (5.10) the time evolution of the
initial (commuting) coordinates; is different from
that of a usual free nonrelativistic particle. This hap-
pens because the do not commute with the opera-
tor A that singles out the physical subspdag, A] =
—im™1, [x2, Al = —m~1. As a result, the position op-
erators do not leave the physical subspace invariant,
Axi|p)phys# 0. Hence, following Dirac, they cannot
be viewed as observable operators. Like for a Dirac
particle[16], one can identify the observable coordi-
nates as those that do commute withTo find them,
let us consider a unitary transformation generated by
the operatol/ = explikm e i p;vr),

UvU t=v, Ux;Ut=X;,
UpiUt=p;, (6.1)
where
6
X,‘ZX,‘-l-—E,'jpj, X,~=x,-+xmfle,~jvj. (6.2)

2
Here the constarstis given by(5.5). Since[X;, V;]1 =
[xi,v;1=0 by construction, the(; can be viewed as
observable coordinate operators. In terms of the new
operators, the nontransformed Hamilton{&r8)reads

=2

p m

=—-—-—=-ViV_ 6.3
H=o_ =5V (6.3)

and we conclude that, consistently w{gh10) the X;
evolve as coordinate operators of a free nonrelativistic
particle, namely asX;(r) = X;(0) + tm~1p;. The
dynamics ofV.. is in turn that of a harmonic oscillator.
Note, however, thav, is not observable[{;., A] =
—2k~1 £ 0), wheread/_|¢)phys= 0, cf.[5]. Thus, the
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physical states are the vacuum states of the harmonicof the higher derivative (2 1)D model of a relativistic

oscillator-like internal operator\gi

Atlast, theX; = X; — $e;; p; commute with thev;
[and hence with1], and are therefore also observable.
Due to the conservation gp;, they have the same
evolution law as theX;. However, the coordinates
X;, i = 1,2, unlike X;, do not commute between
themselves,

(6.4)

Their noncommutativity stems from the noncommuta-
tivity of the velocity operators and the related Zitter-
bewegung. In terms of the operat@6s2), (5.11)

(X, Xkl =i0¢€ji.

Ki=m&X; —tp; +m0e;jp;,

1, 1
59[75 + EKV+V,

cf. [5,6]. The operator;, X; andV; are 2D vectors
by construction. Unlike the initiak;, the V; are
invariant under Galilei boost$/C;, V;1 = 0, whereas
for X; andX; we get

J =¢€ijXip;+ (6.5)

1
[K:j,Xj]Zit(Sjk _ié

This means that the (observablE) transform under

[, Xl =itéjx, moej.

particle with torsion2,14], whose Euclidean version
emerged originally in relation to Fermi—Bose transmu-
tation mechanisriL8]. Like the original (3+ 1)D Ma-
jorana equatiofil 3], its (2+ 1)D analog admits three
types of solutions, namely massive?(< 0 with spec-
trum M, = ms/S,, whereS, = s + n is spin of the
corresponding state, = 0, 1, ...), masslessg? = 0)
and tachyonic §2 > 0) ones. Then requiring also the
Klein—Gordon equation eliminates the massless and
tachyonic sectors and singles out the only massive
state with spinSp = s and massn. We focus there-
fore our attention to the massive sector, and inquire
about the JN limit of the Majorana equation.

In Fock space associated with the deformed Heisen-
berg algebra, the matrix form of the Majorana equa-
tion, (2n|p,J* — smcly) =0, reads

—[po(s +n) + smec]y, + %[vn(n —1+25)p_vYn-1
+V(n+ 1)+ 25) pypnt1] =0 (7.1)

Separating, as before, the divergent part of energy by
putting v, = e~"<* ¢, the IN limit yields

Galilei boosts as planar coordinate operators and, con-* [0 pn = __”¢"

sistently with(6.4), they describe a noncommutative
plane. (In contrast, the operataXs are not Galilei-
covariant.) Note that theX; and X; are analogous to
the Foldy—Wouthuysen and Newton—Wigner coordi-
nates for the Dirac particle, respectiveli6,17]

We conclude that our system described®ung. (3.4)

represents a free, massive, nonrelativistic field on the
noncommutative plane. Its reduction to the physical "

subspaceV_|¢)phys = O yields the free exotic parti-
cle introduced in[7]. The latter is described by the
noncommutative coordinatés and momenta; (see
Eq. (6.4)and[X;, p;1=1i8;j, [pi, pj1=0), whose dy-
namics is given by the usual quadratic Hamiltonian
H = p?/2m; the generators of the Galilei boosts are
given byEq. (6.5) while the angular momentum oper-
atoris7 = €;Xip; + 3052, cf. [7].

7. TheJN limit of the Majorana equation

In the anyon context, the Majorana equation ap-

(\/Ep—(ﬁn—l +vn+ 1p+¢n+1)-

(7.2)

Eq. (7.2)is nothing else as the component form of the
first of Egs. (5.3)its equivalent presentation is

—Hig) =0,

with H the Hamiltonian operator ifEq. (5.3) The
spectrum can be extracted at once from the equivalent
form (6.3) of the Hamiltonian. In the representation
where both the momentum operafpand V., V_ are
diagonal, we find that the energy of the stafien),
n=0,1,...,is

1 ., m
om? P
Taking into account the form of the angular momen-
tum operato(6.5), the quantum numbercan be inter-
preted as internal angular momentum. In other words,
the JN limit of the Majorana equation is a kind of non-

_\/Z

(n)id, (7.3)

En(l;) = (7-4)

peared as the equation describing the quantum theoryrelativistic rotator, whose internal angular momentum
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can take only nonnegative integer values, and whose |¢)phys On the physical subspace the system is hence

spectrum(7.4), is unbounded from below.

Therefore, the only but crucial difference between
our “exotic” system(3.4) and the JN limit of the
(2 + 1)D Majorana equatiofi7.2)is that the first sys-
tem also requires the additional equatign|¢) = 0

described by the Galilei-covariant coordinatis of
the noncommutative plane and by the momenta

Our free systen(3.4)is equivalent to the exotic par-
ticle model in[7]. The two systemare not equivalent,
however, if we switch on an interaction: the nonphys-

(whose component form is the second equation in ical polarizations p, n), (k/2)V+V_|p,n) = n|p, n)

(3.4)). Like Gupta—Bleuler qudization of the electro-
magnetic field, this additional condition “freezes” the
internal “rotator” degree of freedom, which is respon-
sible for the negative contribution to the energy.

To conclude this section, we note that our results

here are consistent with those obtained in our previ-

ous papel6], where, on the one hand, we demon-
strated that the JN limit of the relativistic parti-
cle with torsion yields, at the classical level, the
acceleration-dependent maode Lukierski—Stichel—

Zakrzewski[5], and, on the other hand, showed that

(n=1,2...), could reveal themselves as virtual states.

From the viewpoint of representation theory, the
two-fold centrally extended planar Galilei group has
two Casimir operators, namely

Cl=6ijl<:ipj—m._7—ICH, Cz:piz—ZmH.

(8.1)

By Eqg. (5.7) the first Casimir is fixed as a strong
operator relationC; = 0. On the other hand, due
to Eq. (6.3) we haveC, = m?V,V_. Hence, the

the quantum version of the latter can be described physical subspace constraiit_|¢) = 0 fixes the

in terms of our noncommutative coordinat&s mo-
mentap;, and noncommuting internal “rotator” vari-
ables V; [denoted in[6] by Q;]. The dynamics
and transformation properties with respect to exotic
Galilean boosts and rotations are given(6y8), (6.5).

8. Discussion
The origin of the noncommutative plane can be

traced back to the noncommititaty of velocities ob-
tained as the JN limit of anyon@.7). The struc-

second Casimir to vanisi@z|¢) = 0 (whereas in the
model of Ref[7] C> = 0 is a strong operator relation).
An (up to a constant factor) equivalent form of the
second Casimir is

- B 1

Co=J —m te;Kip; — Eépiz.

Since in the rest frame system = 0 it reduces to

J (that, in turn, becomes proportional 1o V_), our
second equation requires the internal spin to vanish.
These two conditions play a role analogous to that of

ture of the associated Fock space as well as that of (2.1), (2.2)for relativistic anyons.

the deformed Heisenberg algebra of the initial rela-

In contrast, for the JN limit of the Majorana

tivistic anyon system are rooted in the hidden Fock equation, only the first Casimir operator is fixed,
space structure of the Majorana equation which un- C; =0, and the second is left free. This results in the
derlies anyon theory. The (2 1)D Majorana equa-  appearance of negative-energy states in the model of
tion is based on the half-bounded infinite-dimensional Ref.[5].

unitary representations of th€ + 1)-dimensional
Lorentz group.

In close analogy with the relativistic cagg,3), the
structure of the two-fold extended Galilei group fixes
the additional “exotic” terms in the conserved quanti-
ties so that they generate the Heisenberg algebra and P.A.H. is indebted to th®epartamento de Fisica
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