85 research outputs found

    Metabolic Signature of Atypical Fibroxanthoma and Pleomorphic Dermal Sarcoma: Expression of Hypoxia-inducible Factor-1α and Several of Its Downstream Targets

    Get PDF
    Metabolic reprogramming mediated by hypoxia-inducible factors play a crucial role in many human cancers. HIF-1α is activated under hypoxic conditions and is considered a key regulator of oxygen homoeostasis during tumor proliferation under hypoxia. Aim of this research was to analyze the immunohistochemical expression of HIF-1α, VEGF-A, Glut-1, MCT4, and CAIX in atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS). 21 paraffin-embedded AFX and 22 PDS were analysed by immunohistochemis-try, namely HIF-1α, VEGF-A (referred to as VEGF throughout the manuscript), Glut-1, MCT4, and CAIX. To quantify the protein expression, we considered the percentage of positive tumor cells (0: 0%, 1: up to 1%, 2: 2-10%, 3: 11-50%, 4: >50%) in relation to the staining intensity (0: negative, 1: low, 2: medium, 3: strong). HIF-1α expression (mean ± SD) in AFX (9.33±2.92) was significantly stronger than that in PDS (5.90±4.38; P= 0.007), whereas the expression of VEGF, Glut-1, MCT4, and CAIX did not show differences between AFX and PDS. When comparing all tumors without subgroup stratification, the expression of HIF-1α (P= 0.044) and MCT4 (P= 0.036) was significantly stronger in ulcerated tumors than in tumors without ulceration. Our findings provide the first evidence that HIF-1α-induced metabolic reprogramming may contribute to the pathogenesis of AFX and PDS. HIF-1α expression seems to be higher in AFX than in PDS, and ulcerated tumors show higher expression levels of HIF-1α and MCT4 irrespective of the diagnosis

    Stochastic Models on a Ring and Quadratic Algebras. The Three Species Diffusion Problem

    Full text link
    The stationary state of a stochastic process on a ring can be expressed using traces of monomials of an associative algebra defined by quadratic relations. If one considers only exclusion processes one can restrict the type of algebras and obtain recurrence relations for the traces. This is possible only if the rates satisfy certain compatibility conditions. These conditions are derived and the recurrence relations solved giving representations of the algebras.Comment: 12 pages, LaTeX, Sec. 3 extended, submitted to J.Phys.

    On the physical nature of the so-called prominence tornadoes

    Get PDF
    Funding: Open access publishing supported by the National Technical Library in Prague. S. Gunár and P. Heinzel acknowledge the support from grant 22-34841S of the Czech Science Foundation (GAČR). S. Gunár, P. Heinzel, and M. Zapiór acknowledge the support from the project RVO:67985815 of the Astronomical Institute of the Czech Academy of Sciences. N. Labrosse acknowledges support from STFC grant ST/T000422/1. M. Luna acknowledges support through the Ramón y Cajal fellowship RYC2018-026129-I from the Spanish Ministry of Science and Innovation, the Spanish National Research Agency (Agencia Estatal de Investigación), the European Social Fund through Operational Program FSE 2014 of Employment, Education and Training and the Universitat de les Illes Balears. This publication is part of the R + D + i project PID2020-112791GB-I00, financed by MCIN/AEI/10.13039/501100011033. T. Kucera acknowledges support of the NASA Heliophysics ISFM program. D.H.M. would like to thank the STFC for support via consolidated grant ST/W001195/1.The term ‘tornado’ has been used in recent years to describe several solar phenomena, from large-scale eruptive prominences to small-scale photospheric vortices. It has also been applied to the generally stable quiescent prominences, sparking a renewed interest in what historically was called ‘prominence tornadoes’. This paper carries out an in-depth review of the physical nature of ‘prominence tornadoes’, where their name subconsciously makes us think of violent rotational dynamics. However, after careful consideration and analysis of the published observational data and theoretical models, we conclude that ‘prominence tornadoes’ do not differ in any substantial way from other stable solar prominences. There is simply no unequivocal observational evidence of sustained and coherent rotational movements in quiescent prominences that would justify a distinct category of prominences sharing the name with the well-known atmospheric phenomenon. The visual impression of the column-like silhouettes, the perceived helical motions, or the suggestive Doppler-shift patterns all have a simpler, more likely explanation. They are a consequence of projection effects combined with the presence of oscillations and/or counter-streaming flows. ‘Prominence tornadoes’ are thus just manifestations of the complex nature of solar prominences when observed in specific projections. These coincidental viewing angles, together with the presence of fine-structure dynamics and simple yet profoundly distorting projection effects, may sometimes play havoc with our intuitive understanding of perceived shapes and motions, leading to the incorrect analogy with atmospheric tornadoes.Publisher PDFPeer reviewe

    The status of GEO 600

    Get PDF
    The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 10−2210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data

    Get PDF
    Japanese laser interferometric gravitational wave detectors, TAMA300 and LISM, performed a coincident observation during 2001. We perform a coincidence analysis to search for inspiraling compact binaries. The length of data used for the coincidence analysis is 275 hours when both TAMA300 and LISM detectors are operated simultaneously. TAMA300 and LISM data are analyzed by matched filtering, and candidates for gravitational wave events are obtained. If there is a true gravitational wave signal, it should appear in both data of detectors with consistent waveforms characterized by masses of stars, amplitude of the signal, the coalescence time and so on. We introduce a set of coincidence conditions of the parameters, and search for coincident events. This procedure reduces the number of fake events considerably, by a factor ∌10−4\sim 10^{-4} compared with the number of fake events in single detector analysis. We find that the number of events after imposing the coincidence conditions is consistent with the number of accidental coincidences produced purely by noise. We thus find no evidence of gravitational wave signals. We obtain an upper limit of 0.046 /hours (CL =90= 90 %) to the Galactic event rate within 1kpc from the Earth. The method used in this paper can be applied straightforwardly to the case of coincidence observations with more than two detectors with arbitrary arm directions.Comment: 28 pages, 17 figures, Replaced with the version to be published in Physical Review

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares

    Full text link
    The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the Topical Issue on Solar and Stellar Flare

    The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population

    Get PDF
    Genetic variation across the HLA is known to influence renal‐transplant outcome. However, the impact of genetic variation beyond the HLA is less clear. We tested the association of common genetic variation and clinical characteristics, from both the donor and recipient, with post‐transplant eGFR at different time‐points, out to 5‐years post‐transplantation. We conducted GWAS meta‐analyses across 10,844 donors and recipients from five European ancestry cohorts. We also analysed the impact of polygenic risk scores (PRS), calculated using genetic variants associated with non‐transplant eGFR, on post‐transplant eGFR. PRS calculated using the recipient genotype alone, as well as combined donor and recipient genotypes were significantly associated with eGFR at 1‐year post‐transplant. 32% of the variability in eGFR at 1‐year post‐transplant was explained by our model containing clinical covariates (including weights for death/graft‐failure), principal components and combined donor‐recipient PRS, with 0.3% contributed by the PRS. No individual genetic variant was significantly associated with eGFR post‐transplant in the GWAS. This is the first study to examine PRS, composed of variants that impact kidney function in the general population, in a post‐transplant context. Despite PRS being a significant predictor of eGFR post‐transplant, the effect size of common genetic factors is limited compared to clinical variables
    • 

    corecore