8 research outputs found

    Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires

    Get PDF
    High quality ZnSe nanowires (NWs) and complementary ZnSe/CdSe core/shell species have been synthesized using a recently developed solution-liquid-solid (SLS) growth technique. In particular, bismuth salts as opposed to pre-synthesized Bi or Au/Bi nanoparticles have been used to grow NWs at low temperatures in solution. Resulting wires are characterized using transmission electron microscopy and possess mean ensemble diameters between 15 and 28 nm with accompanying lengths ranging from 4-10 μm. Subsequent solution-based overcoating chemistry results in ZnSe wires covered with CdSe nanocrystals. By varying the shell's growth time, different thicknesses can be obtained and range from 8 to 21 nm. More interestingly, the mean constituent CdSe nanocrystal diameter can be varied and results in size-dependent shell emission spectra.Fil: Petchsang, Nattasamon. University of Notre Dame; Estados Unidos. Thailand Ministry of Education; Tailandia. Mahidol University; TailandiaFil: Shapoval, Liubov. Herzen State Pedagogical University Of Russia; RusiaFil: Vietmeyer, Felix. University of Notre Dame; Estados UnidosFil: Yu, Yanghai. University Of Wisconsin Madison;Fil: Hodak, Jose Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Tang, I-Ming. Mahidol University; Tailandia. Thailand Ministry Of Education; TailandiaFil: Kosel, Thomas H.. University of Notre Dame; Estados UnidosFil: Kuno, Masaru. University of Notre Dame; Estados Unido

    Synthetic Strategy and Structural and Optical Characterization of Thin Highly Crystalline Titanium Disulfide Nanosheets

    No full text
    Two-dimensional (2D) nanomaterials have recently received significant attention because of their attractiveness for use in many nanostructured devices. Layered transition-metal dichalcogenides are of particular interest because reducing their dimensionality causes changes in their already anisotropic physical and chemical properties. The present study describes the first bottom-up solution-phase synthesis of thin highly crystalline titanium disulfide (TiS<sub>2</sub>) nanosheets (NSs) using abundant low-cost molecular precursors. The obtained TiS<sub>2</sub> NSs have average dimensions of ∼500 nm × 500 nm in the basal plane and have thicknesses of ∼5 nm. They exhibit broad absorption in the visible that tails out into the near-infrared. The obtained results demonstrate new opportunities in synthesizing low-dimensional 2D nanomaterials with potential use in various photochemical energy applications

    Charge Carrier Trapping and Acoustic Phonon Modes in Single CdTe Nanowires

    No full text
    Semiconductor nanostructures produced by wet chemical synthesis are extremely heterogeneous, which makes single particle techniques a useful way to interrogate their properties. In this paper the ultrafast dynamics of single CdTe nanowires are studied by transient absorption microscopy. The wires have lengths of several micrometers and lateral dimensions on the order of 30 nm. The transient absorption traces show very fast decays, which are assigned to charge carrier trapping into surface defects. The time constants vary for different wires due to differences in the energetics and/or density of surface trap sites. Measurements performed at the band edge compared to the near-IR give slightly different time constants, implying that the dynamics for electron and hole trapping are different. The rate of charge carrier trapping was observed to slow down at high carrier densities, which was attributed to trap-state filling. Modulations due to the fundamental and first overtone of the acoustic breathing mode were also observed in the transient absorption traces. The quality factors for these modes were similar to those measured for metal nanostructures, and indicate a complex interaction with the environment

    Photocatalytic Hydrogen Generation Efficiencies in One-Dimensional CdSe Heterostructures

    No full text
    To better understand the role nanoscale heterojunctions play in the photocatalytic generation of hydrogen, we have designed several model one-dimensional (1D) heterostructures based on CdSe nanowires (NWs). Specifically, CdSe/CdS core/shell NWs and Au nanoparticle (NP)-decorated core and core/shell NWs have been produced using facile solution chemistries. These systems enable us to explore sources for efficient charge separation and enhanced carrier lifetimes important to photocatalytic processes. We find that visible light H<sub>2</sub> generation efficiencies in the produced hybrid 1D structures increase in the order CdSe < CdSe/Au NP < CdSe/CdS/Au NP < CdSe/CdS with a maximum H<sub>2</sub> generation rate of 58.06 ± 3.59 μmol h<sup>–1</sup> g<sup>–1</sup> for CdSe/CdS core/shell NWs. This is 30 times larger than the activity of bare CdSe NWs. Using femtosecond transient differential absorption spectroscopy, we subsequently provide mechanistic insight into the role nanoscale heterojunctions play by directly monitoring charge flow and accumulation in these hybrid systems. In turn, we explain the observed trend in H<sub>2</sub> generation rates with an important outcome being direct evidence for heterojunction-influenced charge transfer enhancements of relevant chemical reduction processes

    Molybdenum Carbamate Nanosheets as a New Class of Potential Phase Change Materials

    No full text
    We report for the first time the synthesis of large, free-standing, Mo<sub>2</sub>O<sub>2</sub>(μ-S)<sub>2</sub>(Et<sub>2</sub>dtc)<sub>2</sub> (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date. More importantly, amorphization is accompanied by dramatic changes to the NS electrical and optical response wherein resulting amorphous species exhibit room-temperature conductivities 5 orders of magnitude larger than those of their crystalline counterparts. This enhancement likely stems from the amorphization-induced formation of sulfur vacancy-related defects and is supported by temperature-dependent transport measurements, which reveal efficient variable range hopping. MoDTC NSs represent one instance of a broader class of transition metal carbamates likely having applications because of their intriguing electrical properties as well as demonstrated ability to toggle metal oxidation states
    corecore