Photocatalytic Hydrogen Generation Efficiencies in One-Dimensional CdSe Heterostructures

Abstract

To better understand the role nanoscale heterojunctions play in the photocatalytic generation of hydrogen, we have designed several model one-dimensional (1D) heterostructures based on CdSe nanowires (NWs). Specifically, CdSe/CdS core/shell NWs and Au nanoparticle (NP)-decorated core and core/shell NWs have been produced using facile solution chemistries. These systems enable us to explore sources for efficient charge separation and enhanced carrier lifetimes important to photocatalytic processes. We find that visible light H<sub>2</sub> generation efficiencies in the produced hybrid 1D structures increase in the order CdSe < CdSe/Au NP < CdSe/CdS/Au NP < CdSe/CdS with a maximum H<sub>2</sub> generation rate of 58.06 ± 3.59 μmol h<sup>–1</sup> g<sup>–1</sup> for CdSe/CdS core/shell NWs. This is 30 times larger than the activity of bare CdSe NWs. Using femtosecond transient differential absorption spectroscopy, we subsequently provide mechanistic insight into the role nanoscale heterojunctions play by directly monitoring charge flow and accumulation in these hybrid systems. In turn, we explain the observed trend in H<sub>2</sub> generation rates with an important outcome being direct evidence for heterojunction-influenced charge transfer enhancements of relevant chemical reduction processes

    Similar works

    Full text

    thumbnail-image

    Available Versions