Synthetic Strategy and Structural and Optical Characterization of Thin Highly Crystalline Titanium Disulfide Nanosheets

Abstract

Two-dimensional (2D) nanomaterials have recently received significant attention because of their attractiveness for use in many nanostructured devices. Layered transition-metal dichalcogenides are of particular interest because reducing their dimensionality causes changes in their already anisotropic physical and chemical properties. The present study describes the first bottom-up solution-phase synthesis of thin highly crystalline titanium disulfide (TiS<sub>2</sub>) nanosheets (NSs) using abundant low-cost molecular precursors. The obtained TiS<sub>2</sub> NSs have average dimensions of ∼500 nm × 500 nm in the basal plane and have thicknesses of ∼5 nm. They exhibit broad absorption in the visible that tails out into the near-infrared. The obtained results demonstrate new opportunities in synthesizing low-dimensional 2D nanomaterials with potential use in various photochemical energy applications

    Similar works

    Full text

    thumbnail-image

    Available Versions