35 research outputs found

    Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. High levels of free fatty acids in the liver impair hepatic lysosomal acidification and reduce autophagic flux. We investigate whether restoration of lysosomal function in NAFLD recovers autophagic flux, mitochondrial function, and insulin sensitivity. Here, we report the synthesis of novel biodegradable acid-activated acidifying nanoparticles (acNPs) as a lysosome targeting treatment to restore lysosomal acidity and autophagy. The acNPs, composed of fluorinated polyesters, remain inactive at plasma pH, and only become activated in lysosomes after endocytosis. Specifically, they degrade at pH of ~6 characteristic of dysfunctional lysosomes, to further acidify and enhance the function of lysosomes. In established in vivo high fat diet mouse models of NAFLD, re-acidification of lysosomes via acNP treatment restores autophagy and mitochondria function to lean, healthy levels. This restoration, concurrent with reversal of fasting hyperglycemia and hepatic steatosis, indicates the potential use of acNPs as a first-in-kind therapeutic for NAFLD.J.L.Z. and A.M. were supported by a BU Nano Cross-disciplinary fellowship from the BU Nano center at Boston University. J.L.Z. was supported by a Presidential Postdoctoral Fellowship from Nanyang Technological University, Grant/Award Number: 021229-00001. C.H.L. was supported by Dean’s Postdoctoral Fellowship, Nanyang Technological University, Lee Kong Chian School of Medicine, Grant/Award Number: 021207-00001. E.A. was supported by Azrieli Fellowship (The Azrieli Foundation). This work was also supported in part by funding from the National Institutes of Health (R01AA026914, OSS ML; R21AG063373, MWG OSS; and R21AG06045, OSS

    Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis

    Get PDF
    Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis

    An Autophagy Modifier Screen Identifies Small Molecules Capable of Reducing Autophagosome Accumulation in a Model of CLN3-Mediated Neurodegeneration

    No full text
    Alterations in the autophagosomal–lysosomal pathway are a major pathophysiological feature of CLN3 disease, which is the most common form of childhood-onset neurodegeneration. Accumulating autofluorescent lysosomal storage material in CLN3 disease, consisting of dolichols, lipids, biometals, and a protein that normally resides in the mitochondria, subunit c of the mitochondrial ATPase, provides evidence that autophagosomal–lysosomal turnover of cellular components is disrupted upon loss of CLN3 protein function. Using a murine neuronal cell model of the disease, which accurately mimics the major gene defect and the hallmark features of CLN3 disease, we conducted an unbiased search for modifiers of autophagy, extending previous work by further optimizing a GFP-LC3 based assay and performing a high-content screen on a library of ~2000 bioactive compounds. Here we corroborate our earlier screening results and identify expanded, independent sets of autophagy modifiers that increase or decrease the accumulation of autophagosomes in the CLN3 disease cells, highlighting several pathways of interest, including the regulation of calcium signaling, microtubule dynamics, and the mevalonate pathway. Follow-up analysis on fluspirilene, nicardipine, and verapamil, in particular, confirmed activity in reducing GFP-LC3 vesicle burden, while also demonstrating activity in normalizing lysosomal positioning and, for verapamil, in promoting storage material clearance in CLN3 disease neuronal cells. This study demonstrates the potential for cell-based screening studies to identify candidate molecules and pathways for further work to understand CLN3 disease pathogenesis and in drug development efforts

    Identification of disease modulating compounds in juvenile neuronal ceroid lipofuscinosis (JNCL)

    No full text
    Mutationen im CLN3 Gen verursachen die neurodegenerative Erkrankung juvenile neuronale Zeroidlipofuszinose (JNCL). Bei dieser Erkrankung sind die Autophagie, der lysosomale pH Wert und der mitochondriale Metabolismus beeinträchtigt. Störungen dieser Prozesse führen zu einer erhöhten Verletzlichkeit neuronaler Zellen gegenüber alters- und umweltbedingten Schäden, einer Anhäufung von Autophagosomen und lysosomalem Speichermaterial, Zelltod und Neurodegeneration. Um die JNCL zu erforschen bedienen wir uns eines Zellmodels aus der Maus, welches die häufigste krankheitsauslösende CLN3 Mutation im Menschen, die Deletion der Exons 7 und 8, nachbildet. Die aus dem Kleinhirn dieser Mäuse stammenden cerebellaren Körnerstammzellen werden als CbCln3Δex7/8/Δex7/8 Zellen, solche aus wild-typ Mäusen als CbCln3+/+ Zellen bezeichnet. Die JNCL ist nicht heilbar und die Entwicklung von Wirkstoffen steht noch am Anfang. Die vorliegende Arbeit befasst sich mit der Durchführung eines Hochdursatzscreenings um Wirkstoffe zu identifizieren, welche eine Anhäufung von Autophagosomen in CbCln3Δex7/8/Δex7/8 Zellen verhindern können. Unter 1750 verschiedenen untersuchten Wirkstoffen konnten wir 28 aktive „Hits“ identifizieren und stellten fest, dass Kalziumkanalblocker, Östrogene und HMG-CoA-Reduktase Inhibitoren gehäuft vertreten waren. Eine sorgfältige Untersuchung die möglichen Interaktionen der aktiven Wirkstoffe mit zellulären Signalwegen und die Analyse ihrer Dosis-Wirkungskurven unterstützte uns bei der Auswahl von Verapamil, Nicardipin und Fluspirilen zur näheren Untersuchung. Diese Wirkstoffe sind Kalziumkanalblocker und Fluspirilen blockt auch D2 Dopaminrezeptoren. Außerdem untersuchten und quantifizierten wir mitochondriale Phänotypen in CbCln3Δex7/8/Δex7/8 Zellen. Unsere Untersuchungen ergaben, dass Mitochondrien in CbCln3Δex7/8/Δex7/8 Zellen einer signifikanten Hyperfusion unterliegen und ein schwächeres Membranpotenzial aufweisen. Weiterhin fanden wir eine Verringerung der maximalen der mitochondrialen Elektronentransportkapazität und eine verringerte Aktivität des Enzyms Zitratsynthase, welches die Effizienz des Zitratzyklus bestimmt. Fluspirilen, Verapamil und, in geringerem Ausmaß, Nicardipin, verbesserten einige krankheitsbedingte lysosomale und mitochondriale Phänotypen. Des Weiteren konnten Verapamil und Nicardipin, nicht aber Fluspirilen, den erhöhten zellulären Kalziumspiegel in CbCln3Δex7/8/Δex7/8 Zellen absenken. Erniedrigungen im Kalziumgehalt können durch die Inhibition der kalziumabhängigen Protease Calpain 1 zu einer Induktion der Autophagie führen. Wir untersuchten, ob eine chemische Inhibition der Calpain 1-Protease die Anzahl der Autophagosomen in CbCln3Δex7/8/Δex7/8 Zellen senkt, und stellten fest, dass dies nicht der Fall ist. Eine Inhibition von Calpain 1 führte lediglich zu einem Anstieg der Zahl zellulärer Autophagosomen. Als Nächstes untersuchten wir die Auswirkung der Wirkstoffbehandlung auf den Autophagiefluss. Verapamil und Nicardipin hatten keinen Einfluss auf den Autophagiefluss in der getesteten Konzentration in CbCln3Δex7/8/Δex7/8 Zellen während Fluspirilen die Autophagie induzierte. Gleichzeitig stellten wir fest, dass hohe Dosen von Nicardipin und Verapamil teilweise vor einem Verlust des lysosomalen pH-Werts durch eine Behandlung mit Bafilomycin A1 schützen konnten. Da Fluspirilen auch ein Dopaminrezeptorblocker ist, untersuchten wir die Auswirkung einer erhöhten Dosis von Dopamin auf die Zahl der Autophagosomen. Wir fanden, dass eine mittlere Dosierung von Dopamin einen Trend zu einer leichten Verringerung von Autophagosomen in CbCln3Δex7/8/Δex7/8 Zellen zur Folge hat. Wir vermuten, dass die Kalziumkanalblocker Verapamil und Nicardipin und der Dopaminrezeptorblocker Fluspirilen unterschiedliche zelluläre Signalwege benutzen, aber letztendlich um ähnliche Botenstoffe verwenden, um die Funktion der Lysosomen in CbCln3Δex7/8/Δex7/8 Zellen zu verbessern. Die Verringerung des intrazellulären Kalziumgehalts durch Verapamil und Nicardipin führt zu einer Aktivierung von Adenylatzyklasen, welche eine Erhöhung des intrazellulären cAMP Spiegels herbeiführen. Fluspirilen inhibiert Dopaminrezeptoren vom Typ D2 (D2DR), was zu einer selektiven Aktivierung von Dopaminrezeptoren des Typs D5 (D5DR) führen könnte. Im Gegensatz zu D2 führen D5D Rezeptoren zu einer Aktivierung von Adenylatzyklasen und einer Erhöhung des cAMP Spiegels. cAMP aktiviert die Protein Kinase A (PKA), welche durch eine Proteinphosphorylierung von lysosomalen Chloridkanälen und Protonenpumpen die lysosomale Aktivität erhöht. Dies führt zu einer Verbesserung des Abbaus von Autophagosomen und lysosomalem Speichermaterial und zu einer verbesserten Zellgesundheit in CbCln3Δex7/8/Δex7/8 Zellen. Eine Verbesserung der lysosomalen Funktion in der JNCL kann einen wirksamen Therapieansatz ergeben. Wir hoffen, dass die hier vorgestellten Methoden und Ergebnisse einen ersten Schritt in diese Richtung darstellen

    FRET-assisted determination of CLN3 membrane topology

    No full text
    Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene, which encodes for a putative lysosomal transmembrane protein with thus far undescribed structure and function. Here we investigate the membrane topology of human CLN3 protein with a combination of advanced molecular cloning, spectroscopy, and in silico computation. Using the transposomics cloning method we first created a library of human CLN3 cDNA clones either with a randomly inserted eGFP, a myc-tag, or both. The functionality of the clones was evaluated by assessing their ability to revert a previously reported lysosomal phenotype in immortalized cerebellar granular cells derived from Cln3Δex7/8 mice (CbCln3Δex7/8). The double-tagged clones were expressed in HeLa cells, and FRET was measured between the donor eGFP and an acceptor DyLight547 coupled to a monoclonal α-myc antibody to assess their relative membrane orientation. The data were used together with previously reported experimental data to compile a constrained membrane topology model for hCLN3 using TOPCONS consensus membrane prediction algorithm. Our model with six transmembrane domains and cytosolic N- and C-termini largely agrees with those previously suggested but differs in terms of the transmembrane domain positions as well as in the size of the luminal loops. This finding improves understanding the function of the native hCLN3 protein

    Illustration of the novel topology models of full-length and truncated forms of human CLN3.

    No full text
    <p>Myc-tag and eGFP insertion sites are illustrated on the new membrane topology model for the full-length human CLN3 (left) generated with Protter <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102593#pone.0102593-Omasits1" target="_blank">[39]</a>. The corresponding topology of the most common truncated hCLN3 protein without insertion sites is shown on the right. The line indicates a common epitope used to generate antibodies used earlier <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102593#pone.0102593-Kyttala1" target="_blank">[17]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102593#pone.0102593-Ezaki1" target="_blank">[21]</a>.</p

    Generation of transposed hCLN3 clones.

    No full text
    <p><b>A:</b> The transposon inserted within the human CLN3 coding sequence produces an hCLN3 protein with a randomly inserted eGFP flanked by 9- and 12- amino acid isolating peptides (underlined). See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102593#pone-0102593-t001" target="_blank">Table 1</a> for transposon insertion sites. eGFP in hCLN3-eGFP clones was later exchanged for a myc-tag while retaining the isolating peptide sequences. <b>B:</b> HeLa cells transfected with hCLN3-myc or –eGFP11-myc clones were counterstained for myc-tag and lysosomal membrane protein LAMP-1, and visualized with confocal microscopy, and the level of myc-tag colocalizing with LAMP-1 was analyzed using an intensity-independent colocalization algorithm (see Mat&Met). The image in the right-most column reflects the intensity symmetry between the myc-tag and LAMP-1. Scale bars 10 µm <b>C:</b> The level of expressed hCLN3 clones in the LAMP-1 positive lysosomes was quantified. Addition of an eGFP to the hCLN3-myc clones reduced the level of their lysosomal localization. Note that the last column for chimeras in C shows the colocalization degree of hCLN3-eGFP11 without myc-tag N = 2, n>3. <b>D:</b> HeLa cells expressing hCLN3-eGFP11 with the most C-terminal eGFP were counter-stained with LysoTracker Red vital dye (LTR), and live-imaged with confocal microscope at 0.2 Hz frequency. Shown is a crop from a 5 minutes image sequence illustrating the partial lysosomal localization of hCLN3-eGFP11 (top row). Regularly, hCLN3-eGFP11 positive vesicles were seen to fuse (arrows in middle row) or dissociate (arrows in bottom row) from LTR positive structures. Scale bars 10 and 2 µm, respectively.</p

    Original eGFP transposon insertion sites within the human CLN3 peptide.

    No full text
    <p>The transposon encoding for eGFP was inserted into the pCMV5 expression vector containing the cDNA for the full-length human CLN3 amino acid sequence at indicated positions by transposase enzyme. The clone # is a running number for different clones as of the N-terminus, (left column), the middle column shows the number of the amino acid in the CLN3 peptide sequence after which the transposon was inserted, and the right column shows the corresponding hCLN3 amino acid sequence. eGFP in clones 1 to 10 was later replaced with a myc-tag and combined with hCLN3-eGFP11 to create chimeric clones with a near C-terminal eGFP and one myc-tag further towards the N-terminus. Refer to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102593#pone-0102593-g004" target="_blank">Figure 4A</a> for visual location along the previously published model for hCLN3. Note that the last 3 amino acids before transposon insertion are duplicated behind the transposon insertion site (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102593#pone-0102593-g001" target="_blank">Figure 1</a>).</p

    <i>In silico c</i>ompilation of FRET and other data as hCLN3 models using TOPCONS constrained membrane prediction algorithm.

    No full text
    <p><b>A:</b> The transmembrane domains (grey), cytosolic (white) and luminal (black) loops from earlier hCLN3 models together with transposon insertion sites (black arrows for myc-tag, green for eGFP) are illustrated <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0102593#pone.0102593-Nugent1" target="_blank">[25]</a>. <b>B:</b> The reliability scores for CLN3 topology predictions indicating the consistency agreement between different prediction algorithms included in TOPCONS are shown as percentage. <b>C:</b> A schematic illustration of the new membrane topology obtained using constraints from FRET analysis, previously published experimental data, and the iterative approach. The cytosolic constraint with a line on top reflects the common epitope for two earlier used antibodies.</p
    corecore