108 research outputs found

    Shear band dynamics from a mesoscopic modeling of plasticity

    Full text link
    The ubiquitous appearance of regions of localized deformation (shear bands) in different kinds of disordered materials under shear is studied in the context of a mesoscopic model of plasticity. The model may or may not include relaxational (aging) effects. In the absence of relaxational effects the model displays a monotonously increasing dependence of stress on strain-rate, and stationary shear bands do not occur. However, in start up experiments transient (although long lived) shear bands occur, that widen without bound in time. I investigate this transient effect in detail, reproducing and explaining a t^1/2 law for the thickness increase of the shear band that has been obtained in atomistic numerical simulations. Relaxation produces a negative sloped region in the stress vs. strain-rate curve that stabilizes the formation of shear bands of a well defined width, which is a function of strain-rate. Simulations at very low strain-rates reveal a non-trivial stick-slip dynamics of very thin shear bands that has relevance in the study of seismic phenomena. In addition, other non-stationary processes, such as stop-and-go, or strain-rate inversion situations display a phenomenology that matches very well the results of recent experimental studies.Comment: 10 pages, 10 figure

    Arctic air pollution: Challenges and opportunities for the next decade

    Get PDF
    The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone) and particles (e.g. black carbon, sulphate) and toxic substances (e.g. polycyclic aromatic hydrocarbons) that can be transported to the Arctic from emission sources located far outside the region, or emitted within the Arctic from activities including shipping, power production, and other industrial activities. This paper qualitatively summarizes the complex science issues motivating the creation of a new international initiative, PACES (air Pollution in the Arctic: Climate, Environment and Societies). Approaches for coordinated, international and interdisciplinary research on this topic are described with the goal to improve predictive capability via new understanding about sources, processes, feedbacks and impacts of Arctic air pollution. Overarching research actions are outlined, in which we describe our recommendations for 1) the development of trans-disciplinary approaches combining social and economic research with investigation of the chemical and physical aspects of Arctic air pollution; 2) increasing the quality and quantity of observations in the Arctic using long-term monitoring and intensive field studies, both at the surface and throughout the troposphere; and 3) developing improved predictive capability across a range of spatial and temporal scales

    Statin pretreatment diminishes the levels of myocardial ischemia markers not only in CABG

    Get PDF
    A response to Ege E, Dereli Y, Kurban S, Sarigul A: Atorvastatin pretreatment diminishes the levels of myocardial ischemia markers early after CABG operation: an observational study. J Cardiothorac Surg 2010, 5:60

    Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals

    Get PDF
    Arterial stiffening is an independent predictor of mortality and underlies the development of isolated systolic hypertension (ISH). A number of factors regulate stiffness, but arterial calcification is also likely to be important. We tested the hypotheses that aortic calcification is associated with aortic stiffness in healthy individuals and that patients with ISH exhibit exaggerated aortic calcification compared with controls. A total of 193 healthy, medication-free subjects (mean age+/-SD: 66+/-8 years) were recruited from the community, together with 15 patients with resistant ISH. Aortic pulse wave velocity (PWV) was measured noninvasively, and aortic calcium content was quantified from high-resolution, thoraco-lumbar computed tomography images using a volume scoring method. In healthy volunteers, calcification was positively and significantly associated with aortic PWV (r=0.6; P<0.0001) but was not related to augmentation index or brachial PWV. Calcification was significantly higher in treatment-resistant and healthy subjects with ISH compared with controls (mean [interquartile range]: 1.92 [1.14 to 3.66], 0.84 [0.35 to 1.75], and 0.19 [0.1 to 0.78] cm3, respectively; P<0.0001 for both). In a multiple regression model, aortic calcium was independently associated with aortic PWV along with age, mean arterial pressure, heart rate, and estimated glomerular filtration rate (R(2)=0.51; P<0.0001). Only age, calcium phosphate product, and aortic PWV were independently associated with calcification. These data suggest that calcification may be important in the process of aortic stiffening and the development of ISH. Calcification may underlie treatment resistance in ISH, and anticalcification strategies may present a novel therapy

    Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles

    Get PDF
    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations

    Age-Dependent Maturation of Toll-Like Receptor-Mediated Cytokine Responses in Gambian Infants

    Get PDF
    The global burden of neonatal and infant mortality due to infection is staggering, particularly in resource-poor settings. Early childhood vaccination is one of the major interventions that can reduce this burden, but there are specific limitations to inducing effective immunity in early life, including impaired neonatal leukocyte production of Th1-polarizing cytokines to many stimuli. Characterizing the ontogeny of Toll-like receptor (TLR)-mediated innate immune responses in infants may shed light on susceptibility to infection in this vulnerable age group, and provide insights into TLR agonists as candidate adjuvants for improved neonatal vaccines. As little is known about the leukocyte responses of infants in resource-poor settings, we characterized production of Th1-, Th2-, and anti-inflammatory- cytokines in response to agonists of TLRs 1-9 in whole blood from 120 Gambian infants ranging from newborns (cord blood) to 12 months of age. Most of the TLR agonists induced TNFα, IL-1β, IL-6, and IL-10 in cord blood. The greatest TNFα responses were observed for TLR4, -5, and -8 agonists, the highest being the thiazoloquinoline CLO75 (TLR7/8) that also uniquely induced cord blood IFNγ production. For most agonists, TLR-mediated TNFα and IFNγ responses increased from birth to 1 month of age. TLR8 agonists also induced the greatest production of the Th1-polarizing cytokines TNFα and IFNγ throughout the first year of life, although the relative responses to the single TLR8 agonist and the combined TLR7/8 agonist changed with age. In contrast, IL-1β, IL-6, and IL-10 responses to most agonists were robust at birth and remained stable through 12 months of age. These observations provide fresh insights into the ontogeny of innate immunity in African children, and may inform development of age-specific adjuvanted vaccine formulations important for global health
    corecore