191 research outputs found

    Embedding laws in diffusions by functions of time

    Full text link
    We present a constructive probabilistic proof of the fact that if B=(Bt)t0B=(B_t)_{t\ge0} is standard Brownian motion started at 00, and μ\mu is a given probability measure on R\mathbb{R} such that μ({0})=0\mu(\{0\})=0, then there exists a unique left-continuous increasing function b:(0,)R{+}b:(0,\infty)\rightarrow\mathbb{R}\cup\{+\infty\} and a unique left-continuous decreasing function c:(0,)R{}c:(0,\infty)\rightarrow\mathbb{R}\cup\{-\infty\} such that BB stopped at τb,c=inf{t>0Btb(t)\tau_{b,c}=\inf\{t>0\vert B_t\ge b(t) or Btc(t)}B_t\le c(t)\} has the law μ\mu. The method of proof relies upon weak convergence arguments arising from Helly's selection theorem and makes use of the L\'{e}vy metric which appears to be novel in the context of embedding theorems. We show that τb,c\tau_{b,c} is minimal in the sense of Monroe so that the stopped process Bτb,c=(Btτb,c)t0B^{\tau_{b,c}}=(B_{t\wedge\tau_{b,c}})_{t\ge0} satisfies natural uniform integrability conditions expressed in terms of μ\mu. We also show that τb,c\tau_{b,c} has the smallest truncated expectation among all stopping times that embed μ\mu into BB. The main results extend from standard Brownian motion to all recurrent diffusion processes on the real line.Comment: Published at http://dx.doi.org/10.1214/14-AOP941 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Global C¹ regularity of the value function in optimal stopping problems

    Get PDF
    We show that if either the process is strong Feller and the boundary point is probabilistically regular for the stopping set, or the process is strong Markov and the boundary point is probabilistically regular for the interior of the stopping set, then the boundary point is Green regular for the stopping set. Combining this implication with the existence of a continuously differentiable flow of the process we show that the value function is continuously differentiable at the optimal stopping boundary whenever the gain function is so. The derived fact holds both in the parabolic and elliptic case of the boundary value problem under the sole hypothesis of probabilistic regularity of the optimal stopping boundary, thus improving upon known analytic results in the PDE literature, and establishing the fact for the first time in the case of integro-differential equations. The method of proof is purely probabilistic and conceptually simple. Examples of application include the first known probabilistic proof of the fact that the time derivative of the value function in the American put problem is continuous across the optimal stopping boundary

    Detecting Changes in Real-Time Data: A User's Guide to Optimal Detection

    Get PDF
    The real-time detection of changes in a noisily observed signal is an important problem in applied science and engineering. The study of parametric optimal detection theory began in the 1930s, motivated by applications in production and defence. Today this theory, which aims to minimize a given measure of detection delay under accuracy constraints, finds applications in domains including radar, sonar, seismic activity, global positioning, psychological testing, quality control, communications and power systems engineering. This paper reviews developments in optimal detection theory and sequential analysis, including sequential hypothesis testing and change-point detection, in both Bayesian and classical (non-Bayesian) settings. For clarity of exposition, we work in discrete time and provide a brief discussion of the continuous time setting, including recent developments using stochastic calculus. Different measures of detection delay are presented, together with the corresponding optimal solutions. We emphasize the important role of the signal-to-noise ratio and discuss both the underlying assumptions and some typical applications for each formulation. This article is part of the themed issue ‘Energy management: flexibility, risk and optimization’.</jats:p

    Optimal prediction of resistance and support levels

    Get PDF
    Assuming that the asset price X follows a geometric Brownian motion we study the optimal prediction problem in

    Precautionary Measures for Credit Risk Management in Jump Models

    Full text link
    Sustaining efficiency and stability by properly controlling the equity to asset ratio is one of the most important and difficult challenges in bank management. Due to unexpected and abrupt decline of asset values, a bank must closely monitor its net worth as well as market conditions, and one of its important concerns is when to raise more capital so as not to violate capital adequacy requirements. In this paper, we model the tradeoff between avoiding costs of delay and premature capital raising, and solve the corresponding optimal stopping problem. In order to model defaults in a bank's loan/credit business portfolios, we represent its net worth by Levy processes, and solve explicitly for the double exponential jump diffusion process and for a general spectrally negative Levy process.Comment: 31 pages, 4 figure

    Optimization in task--completion networks

    Full text link
    We discuss the collective behavior of a network of individuals that receive, process and forward to each other tasks. Given costs they store those tasks in buffers, choosing optimally the frequency at which to check and process the buffer. The individual optimizing strategy of each node determines the aggregate behavior of the network. We find that, under general assumptions, the whole system exhibits coexistence of equilibria and hysteresis.Comment: 18 pages, 3 figures, submitted to JSTA

    Solving the dual Russian option problem by using change-of-measure arguments

    Get PDF
    We apply the change-of-measure arguments of Shepp and Shiryaev [38]to study the dual Russian option pricing problem proposed by Shepp and Shiryaev [39] as an optimal stopping problem for a one-dimensional diffusion process with reflection. We recall the solution to the associated free-boundary problem and give a solution to the resulting onedimensional optimal stopping problem by using the martingale approach of Beibel and Lerche [6] and [7]

    Local time and the pricing of time-dependent barrier options

    Full text link
    A time-dependent double-barrier option is a derivative security that delivers the terminal value ϕ(ST)\phi(S_T) at expiry TT if neither of the continuous time-dependent barriers b_\pm:[0,T]\to \RR_+ have been hit during the time interval [0,T][0,T]. Using a probabilistic approach we obtain a decomposition of the barrier option price into the corresponding European option price minus the barrier premium for a wide class of payoff functions ϕ\phi, barrier functions b±b_\pm and linear diffusions (St)t[0,T](S_t)_{t\in[0,T]}. We show that the barrier premium can be expressed as a sum of integrals along the barriers b±b_\pm of the option's deltas \Delta_\pm:[0,T]\to\RR at the barriers and that the pair of functions (Δ+,Δ)(\Delta_+,\Delta_-) solves a system of Volterra integral equations of the first kind. We find a semi-analytic solution for this system in the case of constant double barriers and briefly discus a numerical algorithm for the time-dependent case.Comment: 32 pages, to appear in Finance and Stochastic

    Boundary-crossing identities for diffusions having the time-inversion property

    Get PDF
    We review and study a one-parameter family of functional transformations, denoted by (S (β)) β∈ℝ, which, in the case β<0, provides a path realization of bridges associated to the family of diffusion processes enjoying the time-inversion property. This family includes Brownian motions, Bessel processes with a positive dimension and their conservative h-transforms. By means of these transformations, we derive an explicit and simple expression which relates the law of the boundary-crossing times for these diffusions over a given function f to those over the image of f by the mapping S (β), for some fixed β∈ℝ. We give some new examples of boundary-crossing problems for the Brownian motion and the family of Bessel processes. We also provide, in the Brownian case, an interpretation of the results obtained by the standard method of images and establish connections between the exact asymptotics for large time of the densities corresponding to various curves of each family
    corecore