
Solving the dual Russian option problem by using change-of-measure 

arguments

LSE Research Online URL for this paper: http://eprints.lse.ac.uk/100117/

Version: Accepted Version

Article:

Gapeev, Pavel V. (2019) Solving the dual Russian option problem by using 

change-of-measure arguments. High Frequency, 2 (2). pp. 76-84. ISSN 2470-6981

https://doi.org/10.1002/hf2.10030

lseresearchonline@lse.ac.uk
https://eprints.lse.ac.uk/ 

Reuse
Items deposited in LSE Research Online are protected by copyright, with all rights 
reserved unless indicated otherwise. They may be downloaded and/or printed for private 
study, or other acts as permitted by national copyright laws. The publisher or other rights 
holders may allow further reproduction and re-use of the full text version. This is 
indicated by the licence information on the LSE Research Online record for the item.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/188553209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Solving the dual Russian option problem

by using change-of-measure arguments

Pavel V. Gapeev∗

We apply the change-of-measure arguments of Shepp and Shiryaev [38] to study the

dual Russian option pricing problem proposed by Shepp and Shiryaev [39] as an optimal

stopping problem for a one-dimensional diffusion process with reflection. We recall the

solution to the associated free-boundary problem and give a solution to the resulting one-

dimensional optimal stopping problem by using the martingale approach of Beibel and

Lerche [6] and [7].

1 Introduction

The articles of Shepp and Shiryaev [37] and [38] initiated a large research area of pricing of

derivative securities of American type with payoffs depending on the running values of the

maxima of the underlying processes. The original Russian (put) option pricing problem of max-

imising the expected value of the discounted running maximum of a geometric Brownian motion

was proposed and explicitly solved in [37] as an optimal stopping problem for a two-dimensional

continuous Markov process. It was further observed by Shepp and Shiryaev [38] that the orig-

inal Russian option problem can be reduced by means of the change-of-measure arguments to

an optimal stopping problem for a one-dimensional diffusion process with reflection. Building

on the optimal stopping analysis of [37] and [38], Duffie and Harrison [11] derived rational

economic values for the Russian options and then extended their arbitrage arguments to more
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general perpetual American lookback options. Gerber et al. [17] and Mordecki and Moreira

[28] obtained closed-form solutions to the perpetual Russian option problems for diffusions with

negative exponential jumps. Pedersen [30] and Guo and Shepp [21] obtained closed-form so-

lutions to the problems of pricing of more complicated perpetual American lookback options

with payoffs depending on the running maxima processes of the underlying geometric Brownian

motions. Shepp et al. [40] proposed a barrier version of the Russian option in the same model,

where the decision about stopping should be taken before the price process reaches a certain

positive level. Asmussen et al. [1] derived explicit expressions for the prices of Russian op-

tions in models with Lévy processes of both positive and negative jumps, by means of reducing

the initial problems to the first passage time problems and solving the latter problems by the

martingale stopping and Wiener-Hopf factorisation. Avram et al. [2] studied exit problems for

spectrally negative Lévy processes and applied the results to solving optimal stopping problems

associated with perpetual Russian and American put options. Peskir [32] presented a solution

to the Russian option problem for a geometric Brownian motion with a finite time horizon (see

also Duistermaat et al. [12] for a numeric algorithm of solving the corresponding free-boundary

problem and Ekström [13] for a study of asymptotic behaviour of the optimal stopping bound-

ary near the expiration). The problems of pricing of perpetual American lookback and other

options with more complicated structure of payoffs depending on the running maxima of the

underlying processes were studied in Gapeev [15], Baurdoux and Kyprianou [5], Guo and Zervos

[22], Ott [29], Kyprianou and Ott [25], and Rodosthenous and Zervos [36] among others (see

also Gapeev [14] and Kitapbayev [24] for the finite-time horizon American lookback options on

the running maxima of geometric Brownian motions). Along with the article of Dubins et al.

[10], the papers [37] and [38] also made a crucial contribution to the optimal stopping problems

arising in the proofs of maximal inequalities for the continuous-time processes further developed

in Graversen and Peskir [18]-[19] and Peskir [31] among others (see also Peskir and Shiryaev

[34; Chapter V] for an extensive overview of the optimal stopping problems related to maximal

inequalities).

Shepp and Shiryaev [39] proposed and explicitly solved the dual Russian (call) option pricing

problem of (2.4) as an optimal stopping problem for a two-dimensional continuous Markov

process (X, Y ) = (Xt, Yt)t≥0 defined in (2.1)–(2.3). The idea of writing this paper was to

draw the attention of the readership to the article [39] in which an optimal stopping problem

with positive exponential discounting rates was studied for one of the first times to the best of

our knowledge. Other optimal stopping problems with positive exponential discounting rates

were recently considered by Xia and Zhou [43], Battauz et al. [3]–[4], and De Donno et al.

[9] among others. The introduction of positive exponential discounting rates into the optimal

stopping problems implied the appearance of disconnected continuation regions or so-called
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double continuation regions for the underlying processes. In this paper, we present an explicit

solution to the optimal stopping problem of (2.4) by means of reducing it to the optimal stopping

problem of (2.8) for a one-dimensional continuous Markov process Z = (Zt)t≥0 solving the

stochastic differential equation in (2.9) with the reflection term L = (Lt)t≥0 from (2.10)–(2.11).

This paper can therefore be considered as a companion one to [38] in the sense that it solves

the dual Russian option problem of [39] by means of the change-of-measure arguments. We also

give a proof of the result by using the martingale approach suggested by Beibel and Lerche [6]

and [7].

The paper is organised as follows. In Section 2, we introduce the setting and notation of the

dual Russian option pricing optimal stopping problem of [39] and follow the change-of-measure

arguments of [38] to reduce it to an optimal stopping problem for a one-dimensional diffusion

process with reflection. In Section 3, we derive explicit solutions of the associated free-boundary

problem for three different cases of relations between the parameters of the model. In Section 4,

we verify that the solution of the free-boundary problem provides the solution of the initial

optimal stopping problem of [39]. We also give a solution to the problem by means of the

martingale approach of [6] and [7]. The main results of the paper are stated in Theorem 4.1.

2 Preliminaries

In this section, we recall the formulation of the dual Russian option problem proposed in [39]

and the solution of the associated free-boundary problem.

2.1 The model

For a precise formulation of the problem, let us consider a probability space (Ω,F , P ) with a

standard Brownian motion B = (Bt)t≥0 and its natural filtration (Ft)t≥0. Let us define the

process X = (Xt)t≥0 by:

Xt = x exp
((

r − δ − σ2/2
)
t+ σ Bt

)
(2.1)

which solves the stochastic differential equation:

dXt = (r − δ)Xt dt+ σXt dBt (X0 = x) (2.2)

where x > 0 is fixed, and r > 0, δ > 0, and σ > 0 are some given constants. (Note that r− δ in

(2.1)–(2.2) corresponds to µ in the notations of [39].) It is assumed that the process X describes

the price of a risky asset on a financial market, where r is the riskless interest rate of a bank

account, δ is the dividend rate paid to the asset holders, and σ is the volatility rate. Let us now
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define the associated with X running minimum process Y = (Yt)t≥0 by:

Yt = y ∧ min
0≤s≤t

Xs (2.3)

for an arbitrary 0 < y ≤ x. We study the optimal stopping problem with the value:

V∗ = inf
τ
E
[
erτ Yτ

]
(2.4)

where the infimum is taken over all stopping times τ with respect to the filtration (Ft)t≥0.

The problem of (2.4) was introduced and solved in [39] as an optimal stopping problem for a

two-dimensional continuous (time-homogeneous strong) Markov process (X, Y ) = (Xt, Yt)t≥0.

In the present paper, we derive a solution to the problem of (2.4), by means of reducing it

to an optimal stopping problem for a one-dimensional Markov process, and by applying the

martingale approach from [6] and [7] (see also [26] and [16] among others).

In order to reduce the problem of (2.4) to a one-dimensional optimal stopping problem, let

us follow the arguments of [38] and introduce the probability measure P̃ defined by:

dP̃

dP

∣∣∣∣
Ft

= exp
(
σ Bt −

(
σ2/2

)
t
)
≡ e−(r−δ)t Xt

x
(2.5)

for all t ≥ 0, so that P̃ is locally equivalent to P on the filtration (Ft)t≥0, according to [35;

Appendix, Theorem 6.1]. Then, by virtue of Girsanov’s theorem (see, e.g. [35; Chapter VIII,

Theorem 1.12]), we obtain that the process B̃ = (B̃t)t≥0 defined by B̃t = Bt − σt, for all t ≥ 0,

is a standard Brownian motion under P̃ . It thus follows from the expressions in (2.1)–(2.2) that

the process X admits the representation:

Xt = x exp
((

r − δ + σ2/2
)
t+ σ B̃t

)
(2.6)

and solves the stochastic differential equation:

dXt =
(
r − δ + σ2

)
Xt dt+ σXt dB̃t (X0 = x) (2.7)

under P̃ . It therefore follows that the value in (2.4) takes the form V∗ = U∗/x with:

U∗ = inf
τ
Ẽ
[
eλτ Zτ

]
(2.8)

where the infimum is taken over the class of stopping times τ with respect to (Ft)t≥0, and we

set λ = 2r − δ. Here, the process Z = (Zt)t≥0 is defined by Zt = Yt/Xt, for all t ≥ 0, and

satisfies the stochastic differential equation:

dZt = −(r − δ)Zt dt− σ Zt dB̃t − dLt (Z0 = z) (2.9)
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with z = (y/x) ∧ 1, where the process L = (Lt)t≥0 defined by:

Lt = −

∫ t

0

dYs

Xs

(2.10)

is non-decreasing which increases when Zt = 1 and does not increase when Zt < 1, for t ≥ 0.

Thus, we may conclude that the process L defined in (2.10) admits the representation:

Lt = −

∫ t

0

I(Zs = 1)
dYs

Xs

(2.11)

for all t ≥ 0, where I(·) denotes the indicator function.

2.2 The optimal stopping problem

In order to compute the value of (2.8), let us therefore consider the optimal stopping problem:

U∗(z) = inf
τ
Ẽz

[
eλτ Zτ

]
(2.12)

where the infimum is taken over stopping times τ of the one-dimensional continuous Markov

process Z, and we recall that λ = 2r− δ. Here, Ẽz denotes the expectation with respect to the

probability measure P̃ under the assumption that the process Z starts at 0 < z ≤ 1. (Note

that U∗(y/x)/x corresponds to V∗(x, y) in the notations of [39].) Moreover, it follows from the

result of [39; Section 2, Lemma] that if 0 < r ≤ (r − δ − σ2/2)2/(2σ2) and r − δ < σ2/2 holds,

then U∗(z) = 0, for all 0 < z ≤ 1. We further consider the case in which either r − δ > σ2/2 or

r > (r− δ − σ2/2)2/(2σ2) holds and will seek for the the optimal stopping time in the problem

of (2.12) in the form:

τ∗ = inf{t ≥ 0 |Zt ≤ a∗} (2.13)

for some number 0 < a∗ < 1 to be determined. (Note that a∗ in (2.13) corresponds to 1/θ in

the notations of [39].)

2.3 The free-boundary problem

It can be shown by means of standard arguments (see, e.g. [23; Chapter V, Section 5.1]) that the

infinitesimal operator L of the process Z acts on an arbitrary twice continuously differentiable

locally bounded function F (z) according to the rule:

(LF )(z) = −(r − δ) z F ′(z) +
σ2z2

2
F ′′(z) (2.14)

for all 0 < z ≤ 1 (see also [8; Appendix 1, Section 2]). In order to find explicit expressions for

the unknown value function U∗(z) from (2.12) and the unknown boundary a∗ from (2.13), we
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may use the results of general theory of optimal stopping problems for continuous time Markov

processes (see, e.g. [41; Chapter III, Section 8] and [34; Chapter IV, Section 8]). We formulate

the associated free-boundary problem:

(LU)(z) = −λU(z) for a < z < 1 (2.15)

U(a+) = a (instantaneous stopping) (2.16)

U ′(a+) = 1 (smooth fit) (2.17)

U ′(1−) = 0 (normal reflection) (2.18)

U(z) = z for z < a (2.19)

U(z) < z for a < z < 1 (2.20)

for some number 0 < a < 1 to be determined. Observe that the superharmonic characterisation

of the value function (see, e.g. [41] and [34; Chapter IV, Section 9]) implies that U∗(z) is the

smallest function satisfying (2.15)-(2.16) and (2.19)-(2.20) with the boundary a∗.

3 Solution to the free-boundary problem

We now look for functions which solve the free-boundary problem stated in (2.15)–(2.17). For

this purpose, we consider three separate cases based on the different relations between the

parameters of the model.

3.1 The case 0 < r < (r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2

Let us first assume that 0 < r < (r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2 holds. Then, the

general solution of the second-order ordinary differential equation in (2.15) has the form:

U(z) = C1 z
η1 + C2 z

η2 (3.1)

where Cj, j = 1, 2, are some arbitrary constants, and ηj, j = 1, 2, are given by:

ηj =
1

2
+
r − δ

σ2
−(−1)j

√(
1

2
+

r − δ

σ2

)2

−
2λ

σ2
≡

1

2
+
r − δ

σ2
−(−1)j

√(
1

2
−

r − δ

σ2

)2

−
2r

σ2
(3.2)

so that 1 < η2 < η1 in this case. (Note that ηj, j = 1, 2, in (3.2) correspond to 1− γj, j = 1, 2,

in the notations of [39].) Hence, by applying the conditions from (2.16)–(2.18) to the function

in (3.1), we get that the equalities:

C1 a
η1 + C2 a

η2 = a (3.3)

C1 η1 a
η1 + C2 η2 a

η2 = a (3.4)

C1 η1 + C2 η2 = 0 (3.5)
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should hold for some 0 < a < 1. Thus, solving the system in (3.3)–(3.5), we obtain that the

candidate value function has the form:

U(z; a∗) = a∗

(
η2 − 1

η2 − η1

( z

a∗

)η1
−

η1 − 1

η2 − η1

( z

a∗

)η2
)

(3.6)

for a∗ < z ≤ 1, with

a∗ =

(
η1(η2 − 1)

η2(η1 − 1)

)1/(η1−η2)

. (3.7)

3.2 The case r = (r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2

Let us now assume that r = (r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2 holds. Then, the general

solution of the ordinary differential equation in (2.15) has the form:

U(z) = C1 z
α ln z + C2 z

α (3.8)

where Cj, j = 1, 2, are some arbitrary constants, and α is given by:

α =
1

2
+

r − δ

σ2
(3.9)

so that α > 1 in this case. (Note that α in (3.9) corresponds to 1− γ in the notations of [39].)

Hence, by applying the conditions from (2.16)–(2.18) to the function in (3.8), we get that the

equalities:

C1 a
α ln a+ C2 a

α = a (3.10)

C1 α aα ln a+ C1 a
α + C2 α aα = a (3.11)

C1 + C2 α = 0 (3.12)

should hold for some 0 < a < 1. Thus, solving the system in (3.10)–(3.12), we obtain that the

candidate value function has the form:

U(z; a∗) = a∗

(
(1− α)

( z

a∗

)α

ln
( z

a∗

)
+
( z

a∗

)α
)

(3.13)

for a∗ < z ≤ 1, with

a∗ = exp

(
1

α(1− α)

)
. (3.14)

3.3 The case r > (r − δ − σ2/2)2/(2σ2)

Let us finally assume that r > (r − δ − σ2/2)2/(2σ2) holds. Then, the general solution of the

ordinary differential equation in (2.15) has the form:

U(z) = C1 z
α sin

(
β ln z

)
+ C2 z

α cos
(
β ln z

)
(3.15)
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where Cj, j = 1, 2, are some arbitrary constants, while α is given by (3.9) and β is defined as:

β =

√
2λ

σ2
−

(
1

2
+

r − δ

σ2

)2

≡

√
2r

σ2
−

(
1

2
−

r − δ

σ2

)2

. (3.16)

Hence, by applying the conditions from (2.16)–(2.18) to the function in (3.15), we get that the

equalities:

C1 a
α sin

(
β ln a

)
+ C2 a

α cos
(
β ln a

)
= a (3.17)

(C1α− C2β) a
α sin

(
β ln a

)
+ (C1β + C2α) a

α cos
(
β ln a

)
= a (3.18)

C1 β + C2 α = 0 (3.19)

should hold for some 0 < a < 1. Thus, solving the system in (3.17)–(3.19), we obtain that the

candidate value function has the form:

U(z; a∗) = a∗

(
1− α

β

( z

a∗

)α

sin
(
β ln

( z

a∗

))
+
( z

a∗

)α

cos
(
β ln

( z

a∗

)))
(3.20)

for a∗ < z ≤ 1, with

a∗ = exp

(
1

β
arctan

( β

α− α2 − β2

))
. (3.21)

(Note that arctan(β/(α− α2 − β2)) in (3.21) corresponds to −φ in the notations of [39].)

4 Main results and proofs

In this section, we show that the solution of the free-boundary problem from the previous section

provides the solution of the initial optimal stopping problem of [39].

4.1 The verification theorem

Let us first verify that the solution of the free-boundary problem (2.14)–(2.20) coincides with

the solution of the optimal stopping problem in (2.12). The following assertion was proved in

[39] for the solution of the corresponding two-dimensional optimal stopping problem.

Theorem 4.1 Let the processes X and Y be given by (2.1)–(2.3), so that the process Z = Y/X

admits the representation in (2.9). Then, the value function of the dual Russian optimal stopping

problem in (2.12) has the form:

U∗(z) =




U(z; a∗), if a∗ < z ≤ 1

z, if 0 < z ≤ a∗
(4.1)
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and τ∗ from (2.13) is an optimal stopping time which is finite (P̃ -a.s.), where we have:

(i) if 0 < r < (r−δ−σ2/2)2/(2σ2) and r−δ > σ2/2 holds, then U(z; a∗) takes the expression

of (3.6) and a∗ is given by (3.7);

(ii) if r = (r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2 holds, then U(z; a∗) takes the expression

of (3.13) and a∗ is given by (3.14);

(iii) if r > (r − δ − σ2/2)2/(2σ2) holds, then U(z; a∗) takes the expression of (3.20) and a∗

is given by (3.21).

Proof: In order to verify the assertions stated above, let us show that the function defined

in (4.1) coincides with the value function in (2.12), and that the stopping time τ∗ in (2.13) is

optimal with the boundary a∗ specified above. For this purpose, let us denote by U(z) the

right-hand side of the expression in (4.1). Then, by means of straightforward calculations from

the previous section, it is shown that the function U(z) solves the system of (2.15) with (2.19)–

(2.20) and satisfies the conditions of (2.16)–(2.18). Hence, by applying the change-of-variable

formula from [33] to the process eλtU(Zt) (see also [34; Chapter II, Section 3.5] for a summary

of the related results on the local time-space formula as well as further references), we obtain:

eλt U(Zt) = U(z) +

∫ t

0

eλs (LU + λU)(Zs) I(Zs 6= a∗, Zs 6= 1) ds+Nt (4.2)

for all t ≥ 0, where the process N = (Nt)t≥0 defined by:

Nt = −

∫ t

0

eλs U ′(Zs) σ Zs dB̃s (4.3)

is a continuous local martingale with respect to the probability measure P̃z.

By using straightforward calculations and the arguments from the previous section, it is

verified that the inequality (LV + λV )(z) ≡ rz ≥ 0 holds for any 0 < z < 1 such that z 6= a∗.

Moreover, it is shown by means of standard arguments that the inequality in (2.20) holds, which

together with the conditions of (2.16)–(2.19) imply that U(z) ≤ z holds, for all 0 < z ≤ 1. We

also observe that the identity:

∫ t

0

I(Zs = 1) ds = 0 (P̃z − a.s.) (4.4)

holds, for all t ≥ 0. This property follows from the fact that the couple of processes (X, Y ) has

a density with respect to the Lebesgue measure, so that P̃z(Zt = 1) = 0, for all t ≥ 0, and by

virtue of Fubini’s theorem, we get that the equality:

Ẽz

∫ ∞

0

I(Zs = 1) ds =

∫ ∞

0

Ẽz

[
I(Zs = 1)

]
ds =

∫ ∞

0

P̃z(Zs = 1) ds = 0 (4.5)
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holds (see also [42; Chapter VIII, Section 2] for the proof related to the standard Russian put

option). Thus, taking into account the fact that the time spent by the process Z at the point a∗

is of the Lebesgue measure zero (see, e.g. [8; Chapter II, Section 1]), we may conclude that the

indicator in (4.2) can be set to one. Hence, the expression in (4.2) yields that the inequalities:

eλτ Zτ ≥ eλτ U(Zτ ) ≥ U(z) +Nτ (4.6)

hold, for any stopping time τ of the process Z started at 0 < z ≤ 1.

Let (τk)k∈N be the localising sequence of stopping times for the process N from (4.3) such

that τk = inf{t ≥ 0 | |Nt| ≥ k}, for each k ∈ N. It therefore follows from the expression in (4.2)

that the inequalities:

eλ(τ∧τk) Zτ∧τk ≥ eλ(τ∧τk) U(Zτ∧τk) ≥ U(z) +Nτ∧τk (4.7)

hold, for any stopping time τ of the process Z and each k ∈ N fixed. Taking the expectation with

respect to P̃z in (4.6), by means of Doob’s optional sampling theorem (see, e.g. [23; Chapter I,

Theorem 3.22]), we get that the inequalities:

Ẽz

[
eλ(τ∧τk) Zτ∧τk

]
≥ Ẽz

[
eλ(τ∧τk) U(Zτ∧τk)

]
≥ U(z) + Ẽz

[
Nτ∧τk

]
= U(z) (4.8)

hold, for all 0 < z ≤ 1. Hence, letting k go to infinity and using Fatou’s lemma, we obtain that

the inequalities:

Ẽz

[
eλτ Zτ

]
≥ Ẽz

[
eλτ U(Zτ )

]
≥ U(z) (4.9)

are satisfied, for any stopping time τ and all 0 < z ≤ 1. By virtue of the structure of the

stopping time in (2.13), it is readily seen that the equalities in (4.9) hold with τ∗ instead of τ

when 0 < z ≤ a∗.

Let us now show that the stopping time τ∗ in (2.13) is finite (P̃ -a.s.). For this purpose, we

follow the schema of arguments of [6] and [42; Chapter VIII, Section 2]. We first observe that

the expression:

lnZt = ln z ∧ min
0≤s≤t

((
r − δ +

σ2

2

)
(s− t) + σ (B̃s − B̃t)

)
(4.10)

holds, for all t ≥ 0. Then, we consider a sequence of first hitting times (ζk)k∈N such that

ζk = inf{t ≥ ζk−1 + 1 | lnZt = 0}, for k ∈ N, and ζ0 = 0. In this case, we see that:
{
inf
t≥0

lnZt ≤ ln a∗

}
=

⋃

k∈N

{
inf

ζk−1≤t<ζk
lnZt ≤ ln a∗

}
(4.11)

holds, where we have ln a∗ < 0. Note that the events on the right-hand side of (4.11) are

independent for different k ∈ N, and their probabilities are equal and strictly positive. Hence,

by virtue of the Borel-Cantelli lemma, we may conclude that:

P̃z

(
inf
t≥0

lnZt ≤ ln a∗

)
= 1 (4.12)
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so that P̃z(τ∗ < ∞) = 1, for any 0 < z ≤ 1 fixed.

It remains us to show that the equalities are attained in (4.9) when τ∗ replaces τ , for

a∗ < z ≤ 1. By virtue of the fact that the function U(z; a∗) and the boundary a∗ satisfy

the conditions in (2.15) and (2.16), it follows from the expression in (4.2) and the structure of

the stopping time in (2.13) that the equality:

eλ(τ∗∧τk) U(Zτ∗∧τk ; a∗) = U(z) +Nτ∗∧τk (4.13)

holds, for all a∗ < z ≤ 1 and each k ∈ N. Observe that the explicit form of the candidate value

function in (3.6), (3.13), and (3.20) yields that the condition:

Ẽz

[
sup
t≥0

eλ(τ∗∧t) U(Zτ∗∧t; a∗)
]
< ∞ (4.14)

holds, for all a∗ < z ≤ 1. Hence, taking into account the property in (4.14) as well as the fact

that P̃z(τ∗ < ∞) = 1, we conclude from the expression in (4.13) that the process (Nτ∗∧t)t≥0 is

a uniformly integrable martingale. Therefore, taking the expectation in (4.13) and letting n go

to infinity, we apply the Lebesgue dominated convergence theorem to obtain the equalities:

Ẽz

[
eλτ∗ Zτ∗

]
= Ẽz

[
eλτ∗ U(Zτ∗ ; a∗)

]
= U(z) (4.15)

for all a∗ < z ≤ 1. The latter, together with the inequalities in (4.9), implies the fact that U(z)

coincides with the value function U∗(z) from (2.12). �

4.2 The martingale approach

Let us finally apply the martingale approach of [6] and [7] for solving the optimal stopping

problem of (2.12). For this purpose, we first observe from the structure of the processes (X, Y )

in (2.1)–(2.3) and of the reward in the optimal stopping problem of (2.12) that U∗(z) = zŨ∗(1) ≡

zŨ∗ holds for the value function with

Ũ∗ = inf
τ
Ẽ1

[
eλτ Zτ I(τ < ∞)

]
≡ Ẽ1

[
eλτ∗ Zτ∗ I(τ∗ < ∞)

]
(4.16)

where the infimum is taken over all stopping times τ of the process Z, and we have P̃1(τ∗ <

∞) = 1. We now search for a function H(z) such that the process M = (Mt)t≥0 defined by:

Mt = eλt Zt H(Zt) (4.17)

and started at M0 = 1 is a continuous local martingale under the probability measure P̃ . In

this case, by applying Itô’s formula (see, e.g. [27; Theorem 4.4]) to the process eλtZtH(Zt), we

obtain that the function H(z) should solve the second-order ordinary differential equation:

σ2z2

2
H ′′(z)− (r − δ − σ2) z H ′(z) = (r − δ − λ)H(z) (4.18)
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as well as satisfy the boundary conditions:

H(1−) = 1 and H ′(1−) = −1. (4.19)

It is shown by means of straightforward computations, similar to the ones derived in the previous

section, that the function H(z) admits the representation:

H(z) =
η2

η2 − η1
zη1−1 −

η1
η2 − η1

zη2−1 (4.20)

when 0 < r < (r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2 holds, or

H(z) = −α zα−1 ln z + zα−1 (4.21)

when r = (r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2 holds, or

H(z) = −
α

β
zα−1 sin

(
β ln z

)
+ zα−1 cos

(
β ln z

)
(4.22)

when r > (r− δ− σ2/2)2/(2σ2) holds, respectively. By means of straightforward computations,

it can be deduced from the expressions in (4.20), or (4.21), or (4.22), that the first- and second-

order derivatives H ′(z) and H ′′(z) of the function H(z) solving the equation in (4.18) and

satisfying the conditions of (4.19) take the form:

H ′(z) =
η2(η1 − 1)

η2 − η1
zη1−2 −

η1(η2 − 1)

η2 − η1
zη2−2 (4.23)

and

H ′′(z) =
η2(η1 − 1)(η1 − 2)

η2 − η1
zη1−3 −

η1(η2 − 1)(η2 − 2)

η2 − η1
zη2−3 (4.24)

when 0 < r < (r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2 holds, or

H ′(z) = −α (α− 1) zα−2 ln z − zα−2 (4.25)

and

H ′′(z) = −α (α− 1) (α− 2) zα−3 ln z − (α2 − 2) zα−3 (4.26)

when r = (r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2 holds, or

H ′(z) = −
α2 − α + β2

β
zα−2 sin

(
β ln z

)
− zα−2 cos

(
β ln z

)
(4.27)

and

H ′′(z) = −
(α2 − α + β2)(α− 2)− β2

β
zα−3 sin

(
β ln z

)
− (α2 + β2 − 2) zα−3 cos

(
β ln z

)
(4.28)

12



when r > (r − δ − σ2/2)2/(2σ2) holds, respectively. It is shown by verifying the equation

H ′(a∗) = 0 and the inequality H ′′(z) < 0, for all z ∈ (0, 1), for the functions in (4.23)-(4.24),

or (4.25)-(4.26), or (4.27)-(4.28), that the function H(z) in (4.20), or (4.21), or (4.22), attains

its maximum at the point a∗ given by (3.7), or (3.14), or (3.21), respectively (see also [42;

Chapter VIII, Section 2] for the proof related to the standard Russian put option). Hence, it

follows from the structure of the expressions in (4.20), or (4.21), or (4.22), that the process M

defined in (4.17) is a continuous local martingale bounded above, and thus, it is a submartingale.

Therefore, we obtain that the inequalities:

Ẽ1

[
eλτ Zτ I(τ < ∞)

]
= Ẽ1

[
(1/H(Zτ ))Mτ I(τ < ∞)

]
(4.29)

≥ (1/H(a∗)) Ẽ1

[
Mτ I(τ < ∞)

]
≥ 1/H(a∗)

hold, for any finite stopping time τ of the process Z. By virtue of the fact that P̃1(τ∗ < ∞) = 1,

we may therefore summarise the arguments above to conclude that the expressions:

Ũ∗ = Ẽ1

[
(1/H(Zτ∗))Mτ∗ I(τ∗ < ∞)

]
= (1/H(a∗)) Ẽ1

[
Mτ∗ I(τ∗ < ∞)

]
= 1/H(a∗) (4.30)

hold and formulate the following assertion.

Corollary 4.2 Let the assumptions of Theorem 4.1 above hold. Then, the value function of the

dual Russian optimal stopping problem in (2.12) admits the representation U∗(z) = zŨ∗(1) ≡

zŨ∗ with Ũ∗ being of the form of (4.30), where H(z) and a∗ take the expressions of (4.20) and

(3.7) when 0 < r < (r−δ−σ2/2)2/(2σ2) and r−δ > σ2/2 holds, or (4.21) and (3.14) when r =

(r−δ−σ2/2)2/(2σ2) and r−δ > σ2/2 holds, or (4.22) and (3.21) when r > (r−δ−σ2/2)2/(2σ2)

holds, respectively.

Remark 4.3 Note that it can also be deduced from the arguments of the previous section that

the function zH(z) should solve the second-order ordinary differential equation in (2.15), so that

the function H(z) from (4.20), or (4.21), or (4.22), equivalently admits the representation:

H(z) =
U(z; a∗)

zU(1; a∗)
(4.31)

for all 0 < z < 1. Here, the function U(z; a∗) is the solution of the equation in (2.15) with

the boundary conditions in (2.16)–(2.17) which takes the expressions of (3.6) when 0 < r <

(r − δ − σ2/2)2/(2σ2) and r − δ > σ2/2 holds, or (3.13) when r = (r − δ − σ2/2)2/(2σ2) and

r − δ > σ2/2 holds, or (3.20) when r > (r − δ − σ2/2)2/(2σ2) holds, respectively.
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