7 research outputs found
Simulation numérique d'écoulements diphasiques avec ligne triple et changement de phase sur maillages non structurés
This thesis aims at the numerical simulation of two-phase flows with contact linesand/or phase change by boiling on unstructured meshes. Indeed, the simulation ofcomplex physical phenomena, such as nucleate boiling, requires a methodology ableto handle wettability effects and mass transfer at the liquid-vapor interface. In thiscontext, a methodology devoted to the simulation of two-phase flows with contact linesin complex geometries is implemented in the finite volume library YALES2. Theinterface curvature at contact line is modified to impose the desired contact angle inorder to represent the wettability effects at the wall. In the framework of the level-setinterface capturing method, a new distance extrapolation process in the Blind Spot isdeveloped in order to improve the interface normal and curvature evaluation in the wallvicinity. The proposed methodology is validated against various cases as contactangle imposition, capillary rise and drop spreading. The detachment of a drop hangingon a horizontal fiber as well as the drop impact on a superhydrophobic cone are alsosimulated, showing a good agreement with experiments from the literature. Next, thephase change solver of YALES2 (dedicated to boiling simulation) is improved,especially thanks to a better viscosity treatment at the interface. This solver is thenused to simulate the rise and growth of a bubble in a superheated liquid. A goodagreement with experiments and simulations from the literature is observed. The filmboiling phenomenon is also simulated in two and three dimensions, revealing thesolver ability to handle interface topology changes. Finally, a first simulation ofnucleate boiling is performed. Although the accuracy and robustness of the methodstill need to be improved, this case opens up new prospects for the future. Forinstance, the numerical study of wettability effects on heat transfer by nucleate boilingcould be studied.Cette thĂšse a pour objectif la simulation numĂ©rique dâĂ©coulements diphasiques surmaillages non structurĂ©s en prĂ©sence de lignes triples et/ou de changement de phasepar Ă©bullition. La simulation de phĂ©nomĂšnes physiques complexes, telle lâĂ©bullitionnuclĂ©Ă©e, nĂ©cessite en effet une mĂ©thodologie capable de gĂ©rer les effets demouillabilitĂ© et le transfert de masse Ă lâinterface liquide-vapeur. Dans cetteperspective, une mĂ©thodologie pour simuler les Ă©coulements diphasiques avec lignetriple dans des gĂ©omĂ©tries complexes est implĂ©mentĂ©e dans la librairie volumes-finisYALES2. Une modification de la courbure de lâinterface Ă la ligne triple permetdâimposer lâangle de contact dĂ©sirĂ© afin de reproduire les effets de mouillabilitĂ© Ă laparoi. Dans le cadre de la mĂ©thode level-set de capture de lâinterface, une procĂ©dureoriginale dâextrapolation de la distance Ă lâinterface dans le Blind Spot est dĂ©veloppĂ©epour amĂ©liorer lâĂ©valuation de la normale et de la courbure de lâinterface Ă proximitĂ© dela paroi solide. La mĂ©thodologie proposĂ©e est validĂ©e sur des cas dâimposition dâanglede contact, dâascension capillaire et dâĂ©talement de goutte. Les simulations dudĂ©tachement dâune goutte suspendue Ă une fibre horizontale et lâimpact dâune gouttesur un cĂŽne superhydrophobe sont en bon accord avec les expĂ©riences de lalittĂ©rature. Dans un second temps, le solveur de changement de phase de YALES2dĂ©diĂ© Ă lâĂ©bullition est amĂ©liorĂ©, notamment grĂące Ă un meilleur traitement de laviscositĂ© Ă lâinterface. Ce solveur est alors employĂ© pour simuler lâascension et lacroissance dâune bulle dans un liquide surchauffĂ©. Un bon accord avec les simulationset expĂ©riences de la littĂ©rature est observĂ©. Le phĂ©nomĂšne dâĂ©bullition en film estĂ©galement simulĂ© en deux et trois dimensions et rĂ©vĂšle les capacitĂ©s du solveur Ă prendre en compte les changements de topologie de lâinterface. Une premiĂšresimulation dâĂ©bullition nuclĂ©Ă©e est enfin rĂ©alisĂ©e. Bien que la prĂ©cision et la robustessede la mĂ©thode doivent ĂȘtre encore amĂ©liorĂ©es, ce cas ouvre les perspectives depoursuite de ce travail, en vue de lâĂ©tude numĂ©rique des effets de mouillabilitĂ© sur letransfert thermique par Ă©bullition nuclĂ©Ă©e
Numerical simulation of two phase flows with contact line and phase change on unstructured meshes
Cette thĂšse a pour objectif la simulation numĂ©rique dâĂ©coulements diphasiques surmaillages non structurĂ©s en prĂ©sence de lignes triples et/ou de changement de phasepar Ă©bullition. La simulation de phĂ©nomĂšnes physiques complexes, telle lâĂ©bullitionnuclĂ©Ă©e, nĂ©cessite en effet une mĂ©thodologie capable de gĂ©rer les effets demouillabilitĂ© et le transfert de masse Ă lâinterface liquide-vapeur. Dans cetteperspective, une mĂ©thodologie pour simuler les Ă©coulements diphasiques avec lignetriple dans des gĂ©omĂ©tries complexes est implĂ©mentĂ©e dans la librairie volumes-finisYALES2. Une modification de la courbure de lâinterface Ă la ligne triple permetdâimposer lâangle de contact dĂ©sirĂ© afin de reproduire les effets de mouillabilitĂ© Ă laparoi. Dans le cadre de la mĂ©thode level-set de capture de lâinterface, une procĂ©dureoriginale dâextrapolation de la distance Ă lâinterface dans le Blind Spot est dĂ©veloppĂ©epour amĂ©liorer lâĂ©valuation de la normale et de la courbure de lâinterface Ă proximitĂ© dela paroi solide. La mĂ©thodologie proposĂ©e est validĂ©e sur des cas dâimposition dâanglede contact, dâascension capillaire et dâĂ©talement de goutte. Les simulations dudĂ©tachement dâune goutte suspendue Ă une fibre horizontale et lâimpact dâune gouttesur un cĂŽne superhydrophobe sont en bon accord avec les expĂ©riences de lalittĂ©rature. Dans un second temps, le solveur de changement de phase de YALES2dĂ©diĂ© Ă lâĂ©bullition est amĂ©liorĂ©, notamment grĂące Ă un meilleur traitement de laviscositĂ© Ă lâinterface. Ce solveur est alors employĂ© pour simuler lâascension et lacroissance dâune bulle dans un liquide surchauffĂ©. Un bon accord avec les simulationset expĂ©riences de la littĂ©rature est observĂ©. Le phĂ©nomĂšne dâĂ©bullition en film estĂ©galement simulĂ© en deux et trois dimensions et rĂ©vĂšle les capacitĂ©s du solveur Ă prendre en compte les changements de topologie de lâinterface. Une premiĂšresimulation dâĂ©bullition nuclĂ©Ă©e est enfin rĂ©alisĂ©e. Bien que la prĂ©cision et la robustessede la mĂ©thode doivent ĂȘtre encore amĂ©liorĂ©es, ce cas ouvre les perspectives depoursuite de ce travail, en vue de lâĂ©tude numĂ©rique des effets de mouillabilitĂ© sur letransfert thermique par Ă©bullition nuclĂ©Ă©e.This thesis aims at the numerical simulation of two-phase flows with contact linesand/or phase change by boiling on unstructured meshes. Indeed, the simulation ofcomplex physical phenomena, such as nucleate boiling, requires a methodology ableto handle wettability effects and mass transfer at the liquid-vapor interface. In thiscontext, a methodology devoted to the simulation of two-phase flows with contact linesin complex geometries is implemented in the finite volume library YALES2. Theinterface curvature at contact line is modified to impose the desired contact angle inorder to represent the wettability effects at the wall. In the framework of the level-setinterface capturing method, a new distance extrapolation process in the Blind Spot isdeveloped in order to improve the interface normal and curvature evaluation in the wallvicinity. The proposed methodology is validated against various cases as contactangle imposition, capillary rise and drop spreading. The detachment of a drop hangingon a horizontal fiber as well as the drop impact on a superhydrophobic cone are alsosimulated, showing a good agreement with experiments from the literature. Next, thephase change solver of YALES2 (dedicated to boiling simulation) is improved,especially thanks to a better viscosity treatment at the interface. This solver is thenused to simulate the rise and growth of a bubble in a superheated liquid. A goodagreement with experiments and simulations from the literature is observed. The filmboiling phenomenon is also simulated in two and three dimensions, revealing thesolver ability to handle interface topology changes. Finally, a first simulation ofnucleate boiling is performed. Although the accuracy and robustness of the methodstill need to be improved, this case opens up new prospects for the future. Forinstance, the numerical study of wettability effects on heat transfer by nucleate boilingcould be studied
Simulation numérique d'écoulements diphasiques avec ligne triple et changement de phase sur maillages non structurés
This thesis aims at the numerical simulation of two-phase flows with contact linesand/or phase change by boiling on unstructured meshes. Indeed, the simulation ofcomplex physical phenomena, such as nucleate boiling, requires a methodology ableto handle wettability effects and mass transfer at the liquid-vapor interface. In thiscontext, a methodology devoted to the simulation of two-phase flows with contact linesin complex geometries is implemented in the finite volume library YALES2. Theinterface curvature at contact line is modified to impose the desired contact angle inorder to represent the wettability effects at the wall. In the framework of the level-setinterface capturing method, a new distance extrapolation process in the Blind Spot isdeveloped in order to improve the interface normal and curvature evaluation in the wallvicinity. The proposed methodology is validated against various cases as contactangle imposition, capillary rise and drop spreading. The detachment of a drop hangingon a horizontal fiber as well as the drop impact on a superhydrophobic cone are alsosimulated, showing a good agreement with experiments from the literature. Next, thephase change solver of YALES2 (dedicated to boiling simulation) is improved,especially thanks to a better viscosity treatment at the interface. This solver is thenused to simulate the rise and growth of a bubble in a superheated liquid. A goodagreement with experiments and simulations from the literature is observed. The filmboiling phenomenon is also simulated in two and three dimensions, revealing thesolver ability to handle interface topology changes. Finally, a first simulation ofnucleate boiling is performed. Although the accuracy and robustness of the methodstill need to be improved, this case opens up new prospects for the future. Forinstance, the numerical study of wettability effects on heat transfer by nucleate boilingcould be studied.Cette thĂšse a pour objectif la simulation numĂ©rique dâĂ©coulements diphasiques surmaillages non structurĂ©s en prĂ©sence de lignes triples et/ou de changement de phasepar Ă©bullition. La simulation de phĂ©nomĂšnes physiques complexes, telle lâĂ©bullitionnuclĂ©Ă©e, nĂ©cessite en effet une mĂ©thodologie capable de gĂ©rer les effets demouillabilitĂ© et le transfert de masse Ă lâinterface liquide-vapeur. Dans cetteperspective, une mĂ©thodologie pour simuler les Ă©coulements diphasiques avec lignetriple dans des gĂ©omĂ©tries complexes est implĂ©mentĂ©e dans la librairie volumes-finisYALES2. Une modification de la courbure de lâinterface Ă la ligne triple permetdâimposer lâangle de contact dĂ©sirĂ© afin de reproduire les effets de mouillabilitĂ© Ă laparoi. Dans le cadre de la mĂ©thode level-set de capture de lâinterface, une procĂ©dureoriginale dâextrapolation de la distance Ă lâinterface dans le Blind Spot est dĂ©veloppĂ©epour amĂ©liorer lâĂ©valuation de la normale et de la courbure de lâinterface Ă proximitĂ© dela paroi solide. La mĂ©thodologie proposĂ©e est validĂ©e sur des cas dâimposition dâanglede contact, dâascension capillaire et dâĂ©talement de goutte. Les simulations dudĂ©tachement dâune goutte suspendue Ă une fibre horizontale et lâimpact dâune gouttesur un cĂŽne superhydrophobe sont en bon accord avec les expĂ©riences de lalittĂ©rature. Dans un second temps, le solveur de changement de phase de YALES2dĂ©diĂ© Ă lâĂ©bullition est amĂ©liorĂ©, notamment grĂące Ă un meilleur traitement de laviscositĂ© Ă lâinterface. Ce solveur est alors employĂ© pour simuler lâascension et lacroissance dâune bulle dans un liquide surchauffĂ©. Un bon accord avec les simulationset expĂ©riences de la littĂ©rature est observĂ©. Le phĂ©nomĂšne dâĂ©bullition en film estĂ©galement simulĂ© en deux et trois dimensions et rĂ©vĂšle les capacitĂ©s du solveur Ă prendre en compte les changements de topologie de lâinterface. Une premiĂšresimulation dâĂ©bullition nuclĂ©Ă©e est enfin rĂ©alisĂ©e. Bien que la prĂ©cision et la robustessede la mĂ©thode doivent ĂȘtre encore amĂ©liorĂ©es, ce cas ouvre les perspectives depoursuite de ce travail, en vue de lâĂ©tude numĂ©rique des effets de mouillabilitĂ© sur letransfert thermique par Ă©bullition nuclĂ©Ă©e
A finite-volume method for simulating contact lines on unstructured meshes in a conservative level-set framework
International audienc
Tetrahedral Remeshing in the Context of Large-Scale Numerical Simulation and High Performance Computing
The purpose of this article is to discuss several modern aspects of remeshing, which is the task of modifying an ill-shaped tetrahedral mesh with bad size elements so that it features an appropriate density of high-quality elements. After a brief sketch of classical stakes about meshes and local mesh operations, we notably expose (i) how the local size of the elements of a mesh can be adapted to a user-defined prescription (guided, e.g., by an error estimate attached to a numerical simulation), (ii) how a mesh can be deformed to efficiently track the motion of the underlying domain, (iii) how to construct a mesh of an implicitlydefined domain, and (iv) how remeshing procedures can be conducted in a parallel fashion when large-scale applications are targeted. These ideas are illustrated with several applications involving high-performance computing. In particular, we show how mesh adaptation and parallel remeshing strategies make it possible to achieve a high accuracy in large-scale simulations of complex flows, and how the aforementioned methods for meshing implicitly defined surfaces allow to represent faithfully intricate geophysical interfaces, and to account for the dramatic evolutions of shapes featured by shape optimization processes
Tetrahedral Remeshing in the Context of Large-Scale Numerical Simulation and High Performance Computing
The purpose of this article is to discuss several modern aspects of remeshing, which is the task of modifying an ill-shaped tetrahedral mesh with bad size elements so that it features an appropriate density of high-quality elements. After a brief sketch of classical stakes about meshes and local mesh operations, we notably expose (i) how the local size of the elements of a mesh can be adapted to a user-defined prescription (guided, e.g., by an error estimate attached to a numerical simulation), (ii) how a mesh can be deformed to efficiently track the motion of the underlying domain, (iii) how to construct a mesh of an implicitlydefined domain, and (iv) how remeshing procedures can be conducted in a parallel fashion when large-scale applications are targeted. These ideas are illustrated with several applications involving high-performance computing. In particular, we show how mesh adaptation and parallel remeshing strategies make it possible to achieve a high accuracy in large-scale simulations of complex flows, and how the aforementioned methods for meshing implicitly defined surfaces allow to represent faithfully intricate geophysical interfaces, and to account for the dramatic evolutions of shapes featured by shape optimization processes