407 research outputs found

    Method and system for monitoring and displaying engine performance parameters

    Get PDF
    The invention is believed a major improvement that will have a broad application in governmental and commercial aviation. It provides a dynamic method and system for monitoring and simultaneously displaying in easily scanned form the available, predicted, and actual thrust of a jet aircraft engine under actual operating conditions. The available and predicted thrusts are based on the performance of a functional model of the aircraft engine under the same operating conditions. Other critical performance parameters of the aircraft engine and functional model are generated and compared, the differences in value being simultaneously displayed in conjunction with the displayed thrust values. Thus, the displayed information permits the pilot to make power adjustments directly while keeping him aware of total performance at a glance of a single display panel

    The role of memory in the tradition represented by the deuteronomic history and the Book of Chronicles

    Get PDF
    Drawing from the work of both Lord and Foley on memory, I will extend arguments I made in The Deuteronomic History and the Book of Chronicles: Scribal Works in an Oral Culture (2010), demonstrating that their understanding of the role of memory in oral traditions provides an excellent lens through which we can view the ancient Israelite tradition as represented in the Deuteronomic History (Deuteronomy, Joshua, Judges, 1-2 Samuel, 1-2 Kings) and the Book of Chronicles (1-2 Chronicles). In the first section I will show how a synchronic reading of these literary works strongly suggests a similar notion of memory behind this tradition--that is, in Lord's words, a "remembering" not "memorization" (Lord 1981:451). The texts that occur within the narrative of the two works (for example, the law of Moses) are imagined as primarily oral compositions to be used as mnemonic aids for the internalization of the tradition. In the second section I will show how a fuller diachronic understanding of these literary works is facilitated by that same notion of memory, at the level of both the composition of these texts and their transmission. The Deuteronomic History and the Book of Chronicles are best understood as two instantiations of the broader tradition that existed in the interplay of the co-existing parallel texts, none of which could possibly represent the complete fullness of the tradition or the entire collective memory of the people. As such, even the material that is unique in Samuel-Kings and Chronicles can be understood as nevertheless remembering the broader tradition, rather than requiring the reconstruction of necessary theological conflicts between the authors/schools.Issue title: Festschrift for John Miles Foley. This article belongs to a special issue of Oral Tradition published in honor of John Miles Foley's 65th birthday and 2011 retirement. The surprise Festschrift, guest-edited by Lori and Scott Garner entirely without his knowledge, celebrates John's tremendous impact on studies in oral tradition through a series of essays contributed by his students from the University of Missouri-Columbia (1979-present) and from NEH Summer Seminars that he has directed (1987-1996)

    The Interrelationship Between the Oral and the Written in the Work of Alexander Campbell

    Get PDF
    Processing note: Check author name. Unsure if entered the "Jr." in the correct position.AbstractNot

    Simulator evaluation of displays for a revised takeoff performance monitoring system

    Get PDF
    Cockpit displays for a Takeoff Performance Monitoring System (TOPMS) to provide pilots with graphic and alphanumeric information pertinent to their decision to continue or abort a takeoff are evaluated. Revised head-down and newly developed head-up displays were implemented on electronic screens in the real-time Transport Systems Research Vehicle (TSRV) Simulator for the Boeing 737 airplane at the Langley Research Center and evaluated by 17 NASA, U.S. Air Force, airline, and industry pilots. Both types of displays were in color, but they were not dependent upon it. The TOPMS head-down display is composed of a runway graphic overlaid with symbolic status and advisory information related to both the expected takeoff point and the predicted stop point (in the event an abort becomes necessary). In addition, an overall Situation Advisory Flag indicates a preferred course of action based on analysis of the various elements of airplane performance and system status. A simpler head-up display conveys most of this same information and relates it to the visual scene. The evaluation pilots found the displays to be credible, easy to monitor, and appropriate for the task. In particular, the pilots said the head-up display was monitored with very little effort and did not obstruct or distract them from monitoring the simulated out-the-window runway scene. This report augments NASA TP-2908, 1989

    Method and system for monitoring and displaying engine performance parameters

    Get PDF
    The invention is a method and system for monitoring and directly displaying the actual thrust produced by a jet aircraft engine under determined operating conditions and the available thrust and predicted (commanded) thrust of a functional model of an ideal engine under the same determined operating conditions. A first set of actual value output signals representative of a plurality of actual performance parameters of the engine under the determined operating conditions is generated and compared with a second set of predicted value output signals representative of the predicted value of corresponding performance parameters of a functional model of the engine under the determined operating conditions to produce a third set of difference value output signals within a range of normal, caution, or warning limit values. A thrust indicator displays when any one of the actual value output signals is in the warning range while shaping function means shape each of the respective difference output signals as each approaches the limit of the respective normal, caution, and warning range limits

    Flight investigation of cockpit-displayed traffic information utilizing coded symbology in an advanced operational environment

    Get PDF
    Traffic symbology was encoded to provide additional information concerning the traffic, which was displayed on the pilot's electronic horizontal situation indicators (EHSI). A research airplane representing an advanced operational environment was used to assess the benefit of coded traffic symbology in a realistic work-load environment. Traffic scenarios, involving both conflict-free and conflict situations, were employed. Subjective pilot commentary was obtained through the use of a questionnaire and extensive pilot debriefings. These results grouped conveniently under two categories: display factors and task performance. A major item under the display factor category was the problem of display clutter. The primary contributors to clutter were the use of large map-scale factors, the use of traffic data blocks, and the presentation of more than a few airplanes. In terms of task performance, the cockpit-displayed traffic information was found to provide excellent overall situation awareness. Additionally, mile separation prescribed during these tests

    Flight investigation of a vertical-velocity command system for VTOL aircraft

    Get PDF
    A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system

    A piloted-simulation evaluation of two electronic display formats for approach and landing

    Get PDF
    The results of a piloted-simulation evaluation of the benefits of adding runway symbology and track information to a baseline electronic-attitude-director-indicator (EADI) format for the approach-to-landing task were presented. The evaluation was conducted for the baseline format and for the baseline format with the added symbology during 3 deg straight-in approaches with calm, cross-wind, and turbulence conditions. Flight-path performance data and pilot subjective comments were examined with regard to the pilot's tracking performance and mental workload for both display formats. The results show that the addition of a perspective runway image and relative track information to a basic situation-information EADI format improve the tracking performance both laterally and vertically during an approach-to-landing task and that the mental workload required to assess the approach situation was thus reduced as a result of integration of information

    Airplane takeoff and landing performance monitoring system

    Get PDF
    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information

    Airplane takeoff and landing performance monitoring system

    Get PDF
    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a predicted nominal performance based upon given conditions, performance deficiencies are detected by the system
    corecore