50 research outputs found

    Joint CNN and Variational Model for Fully-automatic Image Colorization

    Get PDF
    International audienceThis paper aims to couple the powerful prediction of the convolutional neural network (CNN) to the accuracy at pixel scale of the variational methods. In this work, the limitations of the CNN-based image colorization approaches are described. We then focus on a CNN which is able to compute a statistical distribution of the colors for each pixel of the image based on a learning over a large color image database. After describing its limitation, the variational method of [17] is briefly recalled. This method is able to select a color candidate among a given set while performing a regularization of the result. By combining this approach with a CNN, we designed a fully automatic image coloriza-tion framework with an improved accuracy in comparison with CNN alone. Some numerical experiments demonstrate the increased accuracy performed by our method

    A Nonlocal Denoising Algorithm for Manifold-Valued Images Using Second Order Statistics

    No full text
    Nonlocal patch-based methods, in particular the Bayesian approach of Lebrun, Buades, and Morel [SIAM J. Imaging Sci., 6 (2013), pp. 1665-1688], are considered to be state-of-the-art methods for denoising (color) images corrupted by white Gaussian noise of moderate variance. This paper is the first attempt to generalize this technique to manifold-valued images. Such images, for example, images with phase or directional entries or with values in the manifold of symmetric positive definite matrices, are frequently encountered in real-world applications. Generalizing the normal law to manifolds is not canonical, and different attempts have been considered. Here, we focus on a straightforward intrinsic model and discuss the relation to other approaches for specific manifolds. We reinterpret the Bayesian approach of Lebrun, Buades, and Morel [SIAM J. Imaging Sci., 6 (2013), pp. 1665-1688] in terms of minimum mean squared error estimation, which motivates our definition of a corresponding estimator on the manifold. With this estimator at hand we present a nonlocal patch-based method for the restoration of manifold-valued images. Various proof -of-concept examples demonstrate the potential of the proposed algorithm

    Strength training improves fall-related gait kinematics in the elderly: a randomized controlled trial

    No full text
    Background: Falls are one of the greatest concerns among the elderly. Among a number of strategies proposed to reduce the risk of falls, improving muscle strength has been applied as a successful preventive strategy. Although it has been suggested as a relevant strategy, no studies have analyzed how muscle strength improvements affect the gait pattern. The aim of this study was to determine the effects of a lower limb strength training program on gait kinematics parameters associated with the risk of falls in elderly women. Methods: Twenty seven elderly women were assigned in a balance and randomized order into an experimental (n = 14: age = 61.1 (4.3) years, BMI = 26.4 (2.8) kg m(-2)) and a control (n = 13; age = 61.6 (6.6) years; BMI = 25.9 (3.0) kg m(-2)) group. The EG performed lower limb strength training during 12 weeks (3 days per week), being training load increased weekly. Findings: Primary outcomes were gait kinematics parameters and maximum voluntary isometric contractions at pre- and post-training period. Secondary outcomes were training load improvement weekly and one repetition maximum every two weeks. The I maximal repetition increment ranged from 32% to 97% and was the best predictor of changes in gait parameters (spatial, temporal and angular variables) after training for the experimental group. Z-score analysis revealed that the strength training was effective in reversing age-related changes in gait speed, stride length, cadence and toe clearance, approaching the elderly to reference values for healthy young women. Interpretation: Lower limb strength training improves fall-related gait kinematic parameters. Thus, strength training programs should be recommended to the elderly women in order to change their gait pattern towards young adults. (C) 2009 Elsevier Ltd. All rights reserved

    Anorexia nervosa und Gewichtsangst - ist eine sinnvolle Untergruppenbildung möglich?

    No full text

    Role of interfaces on the stability and electrical properties of Ge2Sb2Te5 crystalline structures

    Get PDF
    GeSbTe-based materials exhibit multiple crystalline phases, from disordered rocksalt, to rocksalt with ordered vacancy layers, and to the stable trigonal phase. In this paper we investigate the role of the interfaces on the structural and electrical properties of Ge2Sb2Te5. We find that the site of nucleation of the metastable rocksalt phase is crucial in determining the evolution towards vacancy ordering and the stable phase. By properly choosing the substrate and the capping layers, nucleation sites engineering can be obtained, thus promoting or preventing the vacancy ordering in the rocksalt structure or the conversion into the trigonal phase. The vacancy ordering occurs at lower annealing temperatures (170 °C) for films deposited in the amorphous phase on silicon (111), compared to the case of SiO2 substrate (200°C), or in presence of a capping layer (330°C). The mechanisms governing the nucleation have been explained in terms of interfacial energies. Resistance variations of about one order of magnitude have been measured upon transition from the disordered to the ordered rocksalt structure and then to the trigonal phase. The possibility to control the formation of the crystalline phases characterized by marked resistivity contrast is of fundamental relevance for the development of multilevel phase change data storage

    Structural and electronic transitions in Ge2Sb2Te5 induced by ion irradiation damage

    No full text
    Ge2Sb2Te5 polycrystalline films either in the trigonal stable phase or in the metastable rock-salt structure have been irradiated with 150 keV Ar+ ions. The effects of disorder are studied by electrical, optical, and structural measurements and density functional theory (DFT) simulations. In the metastable structure, the main effect of ion irradiation is a progressive amorphization, with an optical threshold at a fluence of 3 x 10(13) cm(-2). For the trigonal structure, a metal-insulator transition and a crystalline transition to rock-salt structure occur prior to amorphization, which requires a fluence of 8 x 10(13) cm(-2). The bonds of Te atoms close to the van der Waals gaps, present in the trigonal phase and identified by Raman spectroscopy, change as a function of the disorder induced by the irradiation. Comparison with DFT simulations shows that ion irradiation leads to the gradual filling of the van der Waals gaps with displaced Ge and Sb lattice atoms, giving rise first to a metal-insulator transition (9% of displaced atoms) correlated to the modification of the Te bonds and then induces a structural transition to the metastable rock-salt phase (15% of displaced atoms). The data presented here not only show the possibility to tune the degree of order, and therefore the electrical properties and the structure of phase change materials by ion irradiation, but also underline the importance of the van der Waals gaps in determining the transport mechanisms and the stability of the crystalline structure
    corecore