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Abstract. This paper aims to couple the powerful prediction of the
convolutional neural network (CNN) to the accuracy at pixel scale of
the variational methods. In this work, the limitations of the CNN-based
image colorization approaches are described. We then focus on a CNN
which is able to compute a statistical distribution of the colors for each
pixel of the image based on a learning stage on a large color image
database. After describing its limitation, the variational method of [17]
is briefly recalled. This method is able to select a color candidate among a
given set while performing regularization of the result. By combining this
approach with a CNN, we designed a fully automatic image colorization
framework with an improved accuracy in comparison with CNN alone.
Some numerical experiments demonstrate the increased accuracy reached
by our method.

Keywords: Colorization, Convolutional Neural Networks, Total Varia-
tion, Optimization

1 Introduction

In video colorization, academic research has reached great improvement since
the 1970s. In methodological terms, three types of approaches were proposed.

The first one is based on the diffusion of color points drawn by the user [13,
19]. These methods are based onto a diffusion of color with a local assump-
tion: if the contours, so the gradients, are high for the luminance channel, they
should be also high for the chrominance ones. The two drawbacks of this kind of
methods are the tedious work needed by the user in case of complex images (for
instance with textures), and the failure of diffusion method in case when there is
not enough contrast to stop the diffusion of colors at the contours. The second
category of approaches is based on a reference colored image [9] which is used
as an example. In addition, the difficult problem of colorization based on exam-
ple faces has been solved by calculating diffeomorphisms between images [15].
Segmentation and patch methods have been introduced to take into account
example images. Some variational models for colorization that combine several
results under the assumption of spatial and temporal regularity have been pro-
posed [16, 17]. Nevertheless, whereas theses methods are fully automatic when
the reference image is given, its choice may be critical.
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Some models are based on the minimization of a cost function. They have
been developed in order to regularize the results of colorization [14,17], both for
example and manual methods.

The third colorization approach uses some large image databases [23]. Neu-
ral networks (Convolutional Neural Networks, Generative Adversarial Networks,
Autoencoder, Recursive Neural Networks) have also been used successfully lead-
ing to a significant number of recent contributions. This literature can be divided
into two categories of methods. The first evaluates the statistical distribution of
colours for each pixel [3, 18, 23]. The network computes, for each pixel of the
gray-scale image, the probability distribution of the possible colors. The second
takes a grayscale image as input and provides a color image as output, mostly in
the form of chrominance channels [1,5–8,10,12,21]. Some methods use a hybrid
of both (e.g., [24]).

Both techniques require image resizing, that is either done by deconvolution
layers or performed a posteriori with standard interpolation techniques.

Target (input) Result of [23] Our model

Fig. 1. Example of halo effects produced by the method of [23]. Based on a variational
model, our method is able to remove such artifacts.

In the case of [23], the network computes a probability distribution of the
color on a down-sampled version of the original image. The choice of a color in
each pixel at high resolution is made by linear interpolation without taking into
account the grayscale image. Hence, the contours of chrominance and luminance
may be not aligned, producing halo effects. Figure 1 shows some grey halo effects
at the bottom of the cat that are visible on the red part, near the tail. In the
other hand, in comparison to the others approaches of the state-of-the-art, the
method of [23], produces images which are shiniest. We also show in this paper
that we can make it a little bit shinier. Visually, the results of the competitive
methods [8, 12] look drabber. In the following, the method of [23] is integrated
in our system to predict colors.

In image colorization, convolutional neural networks can be used to com-
pute in each pixel a set of possible colors and their associated probabilities [23].
However, since the final choice is made without taking into account the regu-
larity of the image, this leads to halo effects. To improve this, we first propose
to adapt the functional of [17] to the regularization of such results within the
framework of colorization. The method of [17] being able to choose between
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several color candidates in each pixel, it will be quite easy to use on the color
distribution provided by the CNN described in [23]. In addition, the numerical
results of [17] demonstrate the ability to remove halos, which is relevant to the
limitations of [23]. This functional will have to face two main problems: on the
one hand, the transition from a low to a high resolution, and on the other hand,
the maintenance of a higher saturation than current methods.

In this paper, the CNN described in [23] is presented in the first section. In
the second one, the functional of [17] is recalled. The next section describes the
way to couple the methods of [23] and [17]. Finally, the last section shows some
numerical comparisons with some state-of-the art methods.

2 A CNN to compute a statistical distribution of color

The method of [23] is based on a discretization of the CIE Lab color space
into C=313 colors. This number of reference colors comes from the intersection
gamut of the RGB color space and the discretization of the Lab space. The
authors designed a CNN based on a VGG network [20] in order to compute a
statistical distribution of the C colors in each pixel. The input of the network
is the L lightness channel of the Lab transform of an image of size 256×256.
The output is a distribution of probability over a set of 313 couples of a, b
chrominance values for each pixel of a 64×64 size image. The quantification of
the color space in 313 colors is computed from two assumptions. First, the colors
are regularly spaced onto the CIE Lab color space. On this color space two colors
are close with respect to the Euclidean norm when the human visual system feels
them close. The second assumption that rules the set of colors is the respect of
the RGB gamut. The colors have to be displayable onto a standard screen.

To train this CNN, the database ImageNet [4] is used without the gray-scale
images. The images are resized at size 256×256 and then transformed into the
CIE Lab colorspace. The images are then resized at size 64×64 to compute
the a and b channels. The loss-function used is the cross-entropy between the
luminance (a, b) of the training image and the distribution over the 313 original
colors. Let us denote by ∆ the probability simplex in C=313 dimensions.

Denoting by (ŵi(x))i=1..C ∈ ∆N the probability distribution of dimension C
in the N pixels of the 64×64 image (over a domain Ω), and denoting by (wi(x))
the ground truth distribution computed with a soft-encoding scheme (see [23]
for details), the loss-function is given by:

L(ŵ, w) = −
∑
x∈Ω

C∑
i=1

wi(x) log(ŵi(x)). (1)

The forward propagation in the network provides a probability distribution
over the C colors. In order to compute a colorization result, a choice among
all these colors has to be performed. Basically, the authors of [23] proposed an
annealed-mean in each pixel, independently. After that, a resizing of the (a, b)
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channels at original size is done and recombined with brightness channel to
obtain the color image.

Nevertheless, this recombination is done without taking into account any
spatial consideration. In the next section we recall how the functional of [17]
works to adapt it.

3 A Variational Model for Image Colorization with
Channels Coupling

In [17], the authors have proposed a functional that selects a color among can-
didates extracted from a patch-based method. Assuming that C candidates are
available in each pixel of a domain Ω and assuming that two chrominance chan-
nels are available for each candidate. Let us denote for each pixel at position
x the i-th candidate by ci(x), u(x) = (U(x), V (x)) stands for chrominances to
compute, and w(x) = {wi(x)} with i = 1, . . . , C for the candidate weights. Let
us minimize the following functional with respect to (u,w):

F (u,w) := TVC(u) +
λ

2

∫
Ω

C∑
i=1

wi‖u(x)− ci(x)‖22 dx+ χR(u(x)) + χ∆(w(x)) .

(2)

The central part of this model is based on the term∫
Ω

C∑
i=1

wi(x)‖u(x)− ci(x)‖22 dx. (3)

This term is a weighted average of some L2 norms with respect to the candidates
ci. The weights wi can be seen as a probability distribution of the ci. For instance,
if w1 = 1 and wi = 0 for 2 ≤ i ≤ C, the minimum of F with respect to u is
equal to the minimization of

TVC(u) +
λ

2

∫
Ω

‖u(x)− c1(x)‖22 dx+ χR(u(x)). (4)

To simplify the notations, the dependence of each value to the position x of
the current pixel will be removed in the following. For instance, the second term
of (2) will be denoted by

∫
Ω

∑C
i=1 wi(x)‖u(x)− ci(x)‖22 dx.

This model is a classical one with a fidelity-data term
∫
Ω

∑C
i=1 wi‖u − ci‖22

and a regularization term TVC(u). Since the first step of the method extracts
many candidates, we propose averaging the fidelity-data term issued from each
candidate. This average is weighted by wi. Thus, the term∫

Ω

C∑
i=1

wi‖u− ci‖22 (5)
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connects the candidate color ci to the color u that will be retained. The minimum
of this term with respect to u is reached when u is equal to the weighted average
of candidates ci.

Since the average is weighted by wi, these weights are constrained to be onto
the probability simplex. This constraint is formalized by χ∆(w) whose value is
0 if w ∈ ∆ and +∞ otherwise, with ∆ defined as:

∆ :=

{
(w1, · · · , wC) s.t. 0 ≤ wi ≤ 1 and

C∑
i=1

wi = 1

}
. (6)

Let TVC be a coupled total variation defined as

TVC(u) =

∫
Ω

√
γ∂xY 2 + γ∂yY 2 + ∂xU2 + ∂yU2 + ∂xV 2 + ∂yV 2 , (7)

where Y , U and V are the luminance and chrominance channels. γ is a param-
eter which enforces the coupling of the channels. Some others total variation
formulations have been proposed to couple the channels, see for instance [11]
or [2].

In order to compute a suitable solution for problem (2), authors of [17] pro-
pose a primal-dual algorithm with alternating minimization of the terms depend-
ing of w. They also proposed numerical experiments showing the convergence
of their algorithm. Let us note that this recent reference shows that the conver-
gence of such numerical schemes can be demonstrated after smoothing of the
total variation term. Among all the numerical schemes proposed in the refer-
ences [17, 22], we choose the methodology having the best convergence rate as
well as a convergence proof. This scheme is given in Algorithm 2 in [22]. This
algorithm is a block coordinate forward backward algorithm. To increase the
speed-up of the convergence, Algorithm 2 of [22] is initialized with the result of
500 iterations of the primal-dual algorithm of [17]. Whereas this algorithm has
no guaranty of convergence, the authors of [22] have experimentally observed
that it numerically converges faster.

Unfortunately, the functional (2) is highly non-convex and contains many
critical points. More precisely, the functional is convex with respect to u with
fixed w and reversely, it is convex with respect to w for fixed u. Nevertheless,
the functional is not convex with respect to the joint variables (u,w). Thus, even
if the numerical scheme would converge to a local minimum, the solution of the
problem highly depends on the initialization.

In the next section, we will show how the powerful prediction of CNN can
be used to tackle this last problem.

4 Joining Total Variation Model with CNN

In this section, a method to couple the prediction power of CNN with the pre-
cision of variational methods is described. To this aim, let us remark that the
variable w of the functional (2) represents the ratio of each color candidate which
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Fig. 2. Overview of our method. A CNN computes color distribution on each pixel. A
variational method selects then a color for each pixel based on a regularity hypothesis.

is represented in the final result. This comes from the fact that, for a given vector
w ∈ RC , the minimum of

C∑
i=1

wi‖u− ci‖ (8)

with respect to u is given by
C∑
i=1

wici. (9)

Thus, it can bee seen as a probability distribution of the colors in the desired
color image, which is exactly the same purpose of the CNN in [23].

Figure 2 shows an overview of our method. First, the gray-scale image, con-
sidered as the luminance L is given as an input to the CNN. The output of the
CNN is a probability distribution over 313 possible chromaticity at low resolution
(64×64). In order to initialize the minimization algorithm, the output weights
of the CNN can be used. The CNN provides a coarse scale output, that needs
an up-sampling before producing a suitable output at original definition. Two
ways can be considered. For the first one, the variational method can be used
at coarse scale (low definition), and then an interpolation can be performed to
recover a result at fine scale (high definition). For the second one, the probability
distributions can be interpolated to get a high definition array. In the following,
the second approach will be preferred. Indeed, the interpolation of a color image
produces a decrease of the saturation, that makes images drabber. By interpo-
lating the probability distributions instead of the color images, the variational
method will be able to compute a color for each pixel based on a coupling of the
channels at high resolution. The given probability distribution is then used as
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Original image Zhang et al. 2016 Our result
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Fig. 3. Results of Zhang et al. [23] compared with our result. The histogram of the
saturation shows that our result is shinier than the original method. Indeed, the average
value of the saturation is higher for our model (0.4228) than the one of [23] (0.3802).

initialization value for the numerical scheme. As it was still proposed in [17], the

variable u is initialized with
∑C
i=1 wici. After the iterations of the functional,

the result, denoted by (u∗, w∗), provides some binary weights (see, eg, [17], Sec-
tion 2.3.2) and a regularized result u∗ that gives two chromaticity channels, a
and b, at initial definition. Recombined with the luminance L and transformed
into the RGB space, that produces a color image.

Let us remark that the authors of [23] proposed to first produce the color im-
age and then to resize it with bi-cubic interpolation. Unfortunately, up-sampling
or down-sampling images with bi-linear or bi-cubic interpolations reduce the sat-
uration of the colors and make them drabber than the original. To avoid that,
we propose here the opposite approach: we first up-sample the color distribu-
tion, and then we compute a color image at full definition by using it. Since the
numerical scheme is used at full definition, the required memory of the algo-
rithm for all the weights and the colors is a limitation to process high resolution
images on a standard PC. To tackle this issue, we propose to select some of the
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313 colors. This selection is done with respect to the probability distribution of
the colors, by choosing the 10 highest modes.

This choice of 10 has been done experimentally. For most images, 8 or 9
candidates are enough and taking more of them does not improve the result, but
it increases the computational time. On the other hand, taking less candidates
decreases the quality of the result on a significant number of images. Finally, the
number of 10 is a fair trade-off.

The training step of the CNN is done as in [23]. The variational step is not
taken into account during the training process. Indeed, the relation between the
initialization of the weights and the result is not analytically described and the
gradient back-propagation algorithms is not suitable for this problem. Thus, the
training is done by feeding the CNN with a gray-scale image as input and a
color distribution as output. The variational step remains independent of the
full framework during the training step. Its integration will be the purpose of
future works.

In the next section, the numerical results are presented.

5 Numerical Results

Target (input) Result of [23] Our model

Fig. 4. Comparison of our method with [23]. This example provides a proof of concept.
Our method is able to remove the halo effects on the colorization result of [23].

In this section we show a qualitative comparison between [23] and our frame-
work. A lot of results provided by [23] are accurate and reliable. We will show on
these examples that our method does not reduce the quality of the images. We
then propose some comparisons with erroneous results of [23], which shows that
our method is reliable to fully automatically colorize images without artifacts
and halo effects. A time comparison between the CNN inference computation
and the variational step will be proposed to show that the regularization of the
result is not a burden on the CNN approach. Finally, to show the limitation of
CNN in image colorization, we will show some results where neither the approach
of [23] nor our framework are able to produce some reliable results.
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Target (input) Result of [23] Our model

Fig. 5. Comparison of our method with [23].

Figure 3 shows the colorization results of the method of Zhang et al. [23].
Whereas it is hard to see that our method produces a shinier result that the
result of [23] unless being a calibration expert, the histogram of the saturation
is able to show the improvement. Indeed, since the histogram is right-shifted, it
means that globally, the saturation is higher on our result. Quantitatively, the
average of the saturation is equal to 0.4228 for our method, while it is equal
to 0.3802 for the method of [23]. This improvement comes from the fact that
our method selects one color among the ones given by the results of the CNN,
whereas the method of [23] computes the annealed mean of them. The mean
of the colors of the chrominances produces a decrease of the saturation and
makes the colors drabber. By using a selection algorithm based on the image
regularization, our method is able to avoid this drawback.

The result in Figure 4 is a proof of concept for the proposed framework. We
can see a toy example which is automatically colorized by the method of [23].
The result given by the method of [23] produces some halo effect near the only
contour of the image, which is unnatural. The regularization of the result is
able to remove this halo effect and to recover an image looking less artificial.
This toy example contains only two constant parts. The aim of the variational
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Target (input) Result of [23] Our model

Fig. 6. Additional comparisons of our method with [23].

method is to couple the contours of the chrominance channels and the ones of
the luminance. The result produced with our method contains no halo effect,
showing the benefits of our framework.

In Figure 5, we show some results and we compare them to the method
of [23]. For the lion, (first line), a misalignment of the colors with the gray scale
image is visible (a part of the lion is colorized in blue and a part of the sky is
brown beige). This is a typical case of halo effect where our framework is able
to remove the artifacts. For the image of mountaineer, on the result of [23] some
pink stains appear. With our method, the minimization of the total variation
ensures the regularity of the image, thus it removes these strains.

Figure 6 shows additional results. The first line is an old port-card. Its co-
lorization is reliable with the CNN and, in addition, the variational approach
makes it a little bit shinier. This example shows the ability of our approach
to colorize historical images. In the second example, most of the image is well
colorized by the original method of [23]. Nevertheless, the lighthouse as well as
the right-side building contain some orange halos that are not reliable. With the
variational method, the colors are convincing. Additional results are available
on http://www.fabienpierre.fr/ssvm2019

The computational time of the CNN forward pass is about 1.5 sec in GPU,
whereas the minimization of the variational model (2) is about 15 sec in Matlab
in CPU. In [16], the authors provide a computation time almost equal to 1 sec
with unoptimized GPU implementation. Since the minimization scheme of [22]
is about the same, the computational time would be almost equal. Thus, the
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computational time of our approach is not a burden in comparison with the
method of [23].

In Figure 7, a failure case is shown. In this case, since the minimization of
the variational model strongly depends on its initialization, our method is not
able to recover realistic colors. Actually, fully automatic colorization remains an
open problem.

Target (input) Result of [23] Our model

Fig. 7. Fail case. The prediction of the CNN is not able to recover a reliable color.

Conclusion

In this paper, we propose a novel approach to couple the power of the CNN with
the precision of the variational models. This coupling is done with a transfer of
information based on probability distributions. The computation of the two parts
of the framework is based on standard techniques issued from the literature. The
numerical results show the improvement of colorization results performed with
the two methods considered together. Some results where neither the approach
of [23] nor our framework are able to produce some reliable results are presented.
Thus, image colorization remains an open issue despite the huge number of CNN-
based approaches proposed in state-of-the-art.
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