12 research outputs found

    Development of a Fully Human Anti-PDGFRβ Antibody That Suppresses Growth of Human Tumor Xenografts and Enhances Antitumor Activity of an Anti-VEGFR2 Antibody

    Get PDF
    Platelet-derived growth factor receptor β (PDGFRβ) is upregulated in most of solid tumors. It is expressed by pericytes/smooth muscle cells, fibroblast, macrophage, and certain tumor cells. Several PDGF receptor-related antagonists are being developed as potential antitumor agents and have demonstrated promising antitumor activity in both preclinical and clinical settings. Here, we produced a fully human neutralizing antibody, IMC-2C5, directed against PDGFRβ from an antibody phage display library. IMC-2C5 binds to both human and mouse PDGFRβ and blocks PDGF-B from binding to the receptor. IMC-2C5 also blocks ligand-stimulated activation of PDGFRβ and downstream signaling molecules in tumor cells. In animal studies, IMC-2C5 significantly delayed the growth of OVCAR-8 and NCI-H460 human tumor xenografts in nude mice but failed to show antitumor activities in OVCAR-5 and Caki-1 xenografts. Our results indicate that the antitumor efficacy of IMC-2C5 is primarily due to its effects on tumor stroma, rather than on tumor cells directly. Combination of IMC-2C5 and DC101, an anti-mouse vascular endothelial growth factor receptor 2 antibody, resulted in significantly enhanced antitumor activity in BxPC-3, NCI-H460, and HCT-116 xenografts, compared with DC101 alone, and the trend of additive effects to DC101 treatment in several other tumor models. ELISA analysis of NCI-H460 tumor homogenates showed that IMC-2C5 attenuated protein level of vascular endothelial growth factor and basic fibroblast growth factor elevated by DC101 treatment. Finally, IMC-2C5 showed a trend of additive effects when combined with DC101/chemotherapy in MIA-PaCa-2 and NCI-H460 models. Taken together, these results lend great support to the use of PDGFRβ antagonists in combination with other antiangiogenic agents in the treatment of a broad range of human cancers

    Backbone flexibility of CDR3 and immune recognition of antigens

    No full text
    Conformational entropy is an important component of protein-protein interactions; however, there is no reliable method for computing this parameter. We have developed a statistical measure of residual backbone entropy in folded proteins by using the varphi-psi distributions of the 20 amino acids in common secondary structures. The backbone entropy patterns of amino acids within helix, sheet or coil form clusters that recapitulate the branching and hydrogen bonding properties of the side chains in the secondary structure type. The same types of residues in coil and sheet have identical backbone entropies, while helix residues have much smaller conformational entropies. We estimated the backbone entropy change for immunoglobulin complementarity-determining regions (CDRs) from the crystal structures of 34 low-affinity T-cell receptors and 40 high-affinity Fabs as a result of the formation of protein complexes. Surprisingly, we discovered that the computed backbone entropy loss of only the CDR3, but not all CDRs, correlated significantly with the kinetic and affinity constants of the 74 selected complexes. Consequently, we propose a simple algorithm to introduce proline mutations that restrict the conformational flexibility of CDRs and enhance the kinetics and affinity of immunoglobulin interactions. Combining the proline mutations with rationally designed mutants from a previous study led to 2400-fold increase in the affinity of the A6 T-cell receptor for Tax-HLAA2. However, this mutational scheme failed to induce significant binding changes in the already-high-affinity C225-Fab/huEGFR interface. Our results will serve as a roadmap to formulate more effective target functions to design immune complexes with improved biological functions

    The Structural Basis for the Function of Two Anti-VEGF Receptor 2 Antibodies

    Get PDF
    SummaryThe anti-VEGF receptor 2 antibody IMC-1121B is a promising antiangiogenic drug being tested for treatment of breast and gastric cancer. We have determined the structure of the 1121B Fab fragment in complex with domain 3 of VEGFR2, as well as the structure of a different neutralizing anti-VEGFR2 antibody, 6.64, also in complex with VEGFR2 domain 3. The two Fab fragments bind at opposite ends of VEGFR2 domain 3; 1121B directly blocks VEGF binding, whereas 6.64 may prevent receptor dimerization by perturbing the domain 3:domain 4 interface. Mutagenesis reveals that residues essential for VEGF, 1121B, and 6.64 binding are nonoverlapping among the three contact patches

    Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human antihuman VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C

    No full text
    In this report we utilize a novel antagonist antibody to the human VEGFR-3 to elucidate the role of this receptor in in vitro tubular morphogenesis of bovine and human endothelial cells (EC cells) induced by VEGF-C. The antibody hF4-3C5 was obtained by panning a human phage display library on soluble human VEGFR-3. The binding affinity constant of hF4-3C5 significantly exceeds that of the interaction of VEGFR-3 with VEGF-C. hF4-3C5 strongly inhibits the binding of soluble VEGFR-3 to immobilized VEGF-C and abolishes the VEGF-C-mediated mitogenic response of cells that expresses a chimeric human VEGFR-3-cFMS receptor. In fluorescence experiments, hF4-3C5 reactivity is observed with human lymphatic endothelial cells (LECs) and human umbilical vein endothelial cells (HUVECs). Binding of hF4-3C5 shows that about half of bovine aortic endothelial (BAE) cells express VEGFR-3 and cells in this subpopulation are primarily responsible for the chemotactic response to the mature form of VEGF-C (VEGF-C(DeltaNDeltaC)). This response was strongly inhibited by the addition of hF4-3C5. In vitro tube formation by BAE cells induced by VEGF-C(DeltaNDeltaC) was reduced by greater than 60% by hF4-3C5 whereas the response to VEGF(165) was unaffected. Addition of hF4-3C5 together with an antagonist antibody to VEGFR-2 completely abolished the response to VEGF-C(DeltaNDeltaC). Similar results were obtained with HUVECs. Together, these findings point to a role for VEGFR-3 in vascular tubular morphogenesis and highlight the utility of hF4-3C5 as a tool for the investigation of the biology of VEGFR-3
    corecore