1,579 research outputs found

    The role of the orbitofrontal cortex in regulation of interpersonal space: Evidence from frontal lesion and frontotemporal dementia patients

    Get PDF
    Interpersonal distance is central to communication and complex social behaviors but the neural correlates of interpersonal distance preferences are not defined. Previous studies suggest that damage to the orbitofrontal cortex (OFC) is associated with impaired interpersonal behavior. To examine whether the OFC is critical for maintaining appropriate interpersonal distance, we tested two groups of patients with OFC damage: Patients with OFC lesions and patients with behavioral variant frontotemporal dementia. These two groups were compared to healthy controls and to patients with lesions restricted to the dorsolateral prefrontal cortex. Only patients with OFC damage showed abnormal interpersonal distance preferences, which were significantly different from both controls and patients with dorsolateral prefrontal damage. The comfortable distances these patients chose with strangers were significantly closer than the other groups and resembled distances normally used with close others. These results shed light on the role of the OFC in regulating social behavior and may serve as a simple diagnostic tool for dementia or lesion patients

    Reef fish carbonate production assessments highlight regional variation in sedimentary significance (article)

    Get PDF
    This is the final published version.Available from GSA via the DOI in this record.The dataset associated with this article is located in ORE at: https://doi.org/10.24378/exe.485Recent studies show that all marine bony fish produce mud-sized (<63 µm) carbonate at rates relevant to carbonate sediment budgets, thus adding to the debate about the often enigmatic origins of fine-grained marine carbonates. However, existing production data are geographically and taxonomically limited, and because different fish families are now known to produce different carbonate polymorphs—an issue relevant to predicting their preservation potential—these limitations represent an important knowledge gap. Here we present new data from sites in the Western Pacific Ocean, based on an analysis of 45 fish species. Our data show that previously reported production outputs (in terms of rates and family-specific mineralogies) are applicable across different biogeographic regions. On this basis, we model carbonate production for nine coral reef systems around Australia, with production rates averaging 2.1–9.6 g m–2 yr–1, and up to 105 g m–2 yr–1 at discrete sites with high fish biomass. With projected production rates on lower-latitude reefs up to two-fold higher, these outputs indicate that carbonate production rates by fish can be comparable with other fine-grained carbonate-producing taxa such as codiacean algae. However, carbonates produced by Australian reef fish assemblages are dominated by a highly unstable amorphous polymorph; a marked contrast to Caribbean assemblages in which Mg calcite dominates. These findings highlight important regional differences in the sedimentary relevance and preservation potential of fish carbonates as a function of historical biogeographic processes that have shaped the world’s marine fish faunas.Salter, Perry, and Wilson were funded through Natural Environment Research Council (NERC) grants NE/K003143/1 and NE/G010617/1. Harborne was funded through NERC fellowship NE/F015704/1 and Australian Research Council (ARC) fellowship DE120102459

    Fish as major carbonate mud producers and missing components of the tropical carbonate factory

    Get PDF
    This a post-print, author-produced version of an article accepted for publication in Proceedings of the National Academy of Sciences of the United States of America. Copyright © 2011 National Academy of Sciences. The definitive version is available at http://www.pnas.org/content/108/10/3865.fullCarbonate mud is a major constituent of recent marine carbonate sediments and of ancient limestones, which contain unique records of changes in ocean chemistry and climate shifts in the geological past. However, the origin of carbonate mud is controversial and often problematic to resolve. Here we show that tropical marine fish produce and excrete various forms of precipitated (nonskeletal) calcium carbonate from their guts (“low” and “high” Mg-calcite and aragonite), but that very fine-grained (mostly < 2 μm) high Mg-calcite crystallites (i.e., MgCO3) are their dominant excretory product. Crystallites from fish are morphologically diverse and species-specific, but all are unique relative to previously known biogenic and abiotic sources of carbonate within open marine systems. Using site specific fish biomass and carbonate excretion rate data we estimate that fish produce ∼6.1 × 106 kg CaCO3/year across the Bahamian archipelago, all as mud-grade (the < 63 μm fraction) carbonate and thus as a potential sediment constituent. Estimated contributions from fish to total carbonate mud production average ∼14% overall, and exceed 70% in specific habitats. Critically, we also document the widespread presence of these distinctive fish-derived carbonates in the finest sediment fractions from all habitat types in the Bahamas, demonstrating that these carbonates have direct relevance to contemporary carbonate sediment budgets. Fish thus represent a hitherto unrecognized but significant source of fine-grained carbonate sediment, the discovery of which has direct application to the conceptual ideas of how marine carbonate factories function both today and in the past

    Inter-habitat variability in parrotfish bioerosion rates and grazing pressure on an indian ocean reef platform (article)

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordData Access: The research data supporting this publication are openly available in ORE at https://doi.org/10.24378/exe.2683Parrotfish perform a variety of vital ecological functions on coral reefs, but we have little understanding of how these vary spatially as a result of inter-habitat variability in species assemblages. Here, we examine how two key ecological functions that result from parrotfish feeding, bioerosion and substrate grazing, vary between habitats over a reef scale in the central Maldives. Eight distinct habitats were delineated in early 2015, prior to the 2016 bleaching event, each supporting a unique parrotfish assemblage. Bioerosion rates varied from 0 to 0.84 ± 0.12 kg m−2 yr−1 but were highest in the coral rubble-and Pocillopora spp.-dominated habitat. Grazing pressure also varied markedly between habitats but followed a different inter-habitat pattern from that of bioerosion, with different contributing species. Total parrotfish grazing pressure ranged from 0 to ~264 ± 16% available substrate grazed yr-1 in the branching Acropora spp.-dominated habitat. Despite the importance of these functions in influencing reef-scale physical structure and ecological health, the highest rates occurred over less than 30% of the platform area. The results presented here provide new insights into within-reef variability in parrotfish ecological functions and demonstrate the importance of considering how these interact to influence reef geo-ecology.Natural Environment Research Council (NERC

    Conformism in the food processing techniques of white-faced capuchin monkeys (Cebus capucinus)

    Get PDF
    Researchers of “culture” have long been interested in the role of social learning in establishing patterns of behavioral variation in wild animals, but very few studies examine this issue using a developmental approach. This 7-year study examines the acquisition of techniques used to process Luehea candida fruits in a wild population of white-faced capuchin monkeys, Cebus capucinus, residing in and near Lomas Barbudal Biological Reserve, Costa Rica. The two techniques for extracting seeds (pounding or scrubbing) were approximately equal in efficiency, and subjects experimented with both techniques before settling on one technique—typically the one they most frequently observed. In a sample of 106 subjects that had already settled on a preferred technique, the females adopted the maternal technique significantly more often than expected by chance, but the males did not. Using a longitudinal approach, I examined the acquisition of Luehea processing techniques during the first 5 years of life. Regression analysis revealed that the technique most frequently observed (measured as proportion of Luehea processing bouts observed that used pounding as opposed to scrubbing) significantly predicted the technique adopted by female observers, particularly in the second year of life; the amount of impact of the observed technique on the practiced technique was somewhat less significant for male observers. These results held true for (a) observations of maternal technique only, (b) observations of technique used by all individuals other than the mother, and (c) observations of maternal and non-maternal techniques combined

    Confronting Standard Models of Proto–Planetary Disks With New Mid–Infrared Sizes from the Keck Interferometer

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.The accepted author manuscript is in ORE at http://hdl.handle.net/10871/21611We present near- and mid-infrared (MIR) interferometric observations made with the Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the infrared telescope facilities (IRTFs) of 11 well-known young stellar objects, several of which were observed for the first time in these spectral and spatial resolution regimes. With au-level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and MIR disk emission. We find a high degree of correlation between the stellar luminosity and the MIR disk sizes after using near-infrared data to remove the contribution from the inner rim. We then use a semi-analytical physical model to also find that the very widely used "star + inner dust rim + flared disk" class of models strongly fails to reproduce the spectral energy distribution (SED) and spatially resolved MIR data simultaneously; specifically a more compact source of MIR emission is required than results from the standard flared disk model. We explore the viability of a modification to the model whereby a second dust rim containing smaller dust grains is added, and find that the 2-rim model leads to significantly improved fits in most cases. This complexity is largely missed when carrying out SED modeling alone, although detailed silicate feature fitting by McClure et al. recently came to a similar conclusion. As has been suggested recently by Menu et al., the difficulty in predicting MIR sizes from the SED alone might hint at "transition disk"-like gaps in the inner au; however, the relatively high correlation found in our MIR disk size versus stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.M.S. was supported by NASA ADAP grant NNX09AC73G. R.W.R. was supported by the IR&D program of The Aerospace Corporation

    Able-Bodied Wild Chimpanzees Imitate a Motor Procedure Used by a Disabled Individual to Overcome Handicap

    Get PDF
    Chimpanzee culture has generated intense recent interest, fueled by the technical complexity of chimpanzee tool-using traditions; yet it is seriously doubted whether chimpanzees are able to learn motor procedures by imitation under natural conditions. Here we take advantage of an unusual chimpanzee population as a ‘natural experiment’ to identify evidence for imitative learning of this kind in wild chimpanzees. The Sonso chimpanzee community has suffered from high levels of snare injury and now has several manually disabled members. Adult male Tinka, with near-total paralysis of both hands, compensates inability to scratch his back manually by employing a distinctive technique of holding a growing liana taut while making side-to-side body movements against it. We found that seven able-bodied young chimpanzees also used this ‘liana-scratch’ technique, although they had no need to. The distribution of the liana-scratch technique was statistically associated with individuals' range overlap with Tinka and the extent of time they spent in parties with him, confirming that the technique is acquired by social learning. The motivation for able-bodied chimpanzees copying his variant is unknown, but the fact that they do is evidence that the imitative learning of motor procedures from others is a natural trait of wild chimpanzees

    Assessing Walking Ability in People with HTLV-1-Associated Myelopathy Using the 10 Meter Timed Walk and the 6 Minute Walk Test

    No full text
    Five to ten million persons, are infected by HTLV-1 of which 3% will develop HTLV-1-associated myelopathy (HAM) a chronic, disabling inflammation of the spinal cord. Walking, a fundamental, complex, multi-functional task is demanding of multiple body systems. Restricted walking ability compromises activity and participation levels in people with HAM (pwHAM). Therapy aims to improve mobility but validated measures are required to assess change.Prospective observational study.To explore walking capacity in pwHAM, walking endurance using the 6 minute walk (6MW), and gait speed, using the timed 10m walk (10mTW).Out-patient setting in an inner London Teaching hospital.Prospective documentation of 10mTW and 6MW distance; walking aid usage and pain scores measured twice, a median of 18 months apart.Data analysis was completed for twenty-six pwHAM, (8♂; 18♀; median age: 57.8 years; median disease duration: 8 years). Median time at baseline to: complete 10m was 17.5 seconds, versus 21.4 seconds at follow up; 23% completed the 6MW compared to 42% at follow up and a median distance of 55m was covered compared to 71m at follow up. Using the 10mTW velocity to predict the 6MW distance, overestimated the distance walked in 6 minutes (p<0.01). Functional decline over time was captured using the functional ambulation categories.The 10mTW velocity underestimated the degree of disability. Gait speed usefully predicts functional domains, shows direction of functional change and comparison with published healthy age matched controls show that these patients have significantly slower gait speeds. The measured differences over 18 months were sufficient to reliably detect change and therefore these assessments can be useful to detect improvement or deterioration within broader disability grades. Walking capacity in pwHAM should be measured using the 10mTW for gait speed and the 6MW for endurance
    corecore