875 research outputs found

    Nonperturbative renormalization group in a light-front three-dimensional real scalar model

    Full text link
    The three-dimensional real scalar model, in which the Z2Z_2 symmetry spontaneously breaks, is renormalized in a nonperturbative manner based on the Tamm-Dancoff truncation of the Fock space. A critical line is calculated by diagonalizing the Hamiltonian regularized with basis functions. The marginal (ϕ6\phi^6) coupling dependence of the critical line is weak. In the broken phase the canonical Hamiltonian is tachyonic, so the field is shifted as ϕ(x)→φ(x)+v\phi(x)\to\varphi(x)+v. The shifted value vv is determined as a function of running mass and coupling so that the mass of the ground state vanishes.Comment: 23 pages, LaTeX, 6 Postscript figures, uses revTeX and epsbox.sty. A slight revision of statements made, some references added, typos correcte

    RPA for Light-Front Hamiltonian Field Theory

    Get PDF
    A self-consistent random phase approximation (RPA) is proposed as an effective Hamiltonian method in Light-Front Field Theory (LFFT). We apply the general idea to the light-front massive Schwinger model to obtain a new bound state equation and solve it numerically.Comment: A major revision in presentation, while the results essentially unchanged. 2 figs. replaced, 1 fig. added, some parts of Sec. V moved to Sec. IV, some wording changed, typos correcte

    NASA Human Exploration Rover Challenge

    Get PDF
    NASA\u27s Human Exploration Rover Challenge, held annually in at the Marshall Space Flight Center in Huntsville, Alabama, is an engineering design challenge that asks teams of student engineers to design a human-powered vehicle capable of traversing a simulated lunar surface. The rover must be able to be transported in a 5x5x5 foot cube, echoing the design constraint faced by the engineers who built the Lunar Roving Vehicles used by the astronauts of the later Apollo missions

    Fermion Condensates and the Trivial Vacuum of Light-Cone Quantum Field Theory

    Get PDF
    We discuss the definition of condensates within light-cone quantum field theory. As the vacuum state in this formulation is trivial, we suggest to abstract vacuum properties from the particle spectrum. The latter can in principle be calculated by solving the eigenvalue problem of the light-cone Hamiltonian. We focus on fermionic condensates which are order parameters of chiral symmetry breaking. As a paradigm identity we use the Gell-Mann-Oakes-Renner relation between the quark condensate and the observable pion mass. We examine the analogues of this relation in the `t~Hooft and Schwinger model, respectively. A brief discussion of the Nambu-Jona-Lasinio model is added.Comment: 14 pages, no figures, latex2

    Six-body Light-Front Tamm-Dancoff approximation and wave functions for the massive Schwinger model

    Full text link
    The spectrum of the massive Schwinger model in the strong coupling region is obtained by using the light-front Tamm-Dancoff (LFTD) approximation up to including six-body states. We numerically confirm that the two-meson bound state has a negligibly small six-body component. Emphasis is on the usefulness of the information about states (wave functions). It is used for identifying the three-meson bound state among the states below the three-meson threshold. We also show that the two-meson bound state is well described by the wave function of the relative motion.Comment: 19 pages, RevTeX, 7 figures are available upon request; Minor errors have been corrected; Final version to appear in Phys.Rev.

    The Influence of Higher Fock States in Light-Cone Gauge Theories

    Get PDF
    In the light-cone Fock state expansion of gauge theories, the influence of non-valence states may be significant in precision non-perturbative calculations. In two-dimensional gauge theories, it is shown how these states modify the behaviour of the light-cone wavefunction in significant ways relative to endemic choices of variational ansatz. Similar effects in four-dimensional gauge theories are briefly discussed.Comment: 4 pages, REVTE

    Mesons in the massive Schwinger model on the light-cone

    Full text link
    We investigate mesons in the bosonized massive Schwinger model in the light-front Tamm-Dancoff approximation in the strong coupling region. We confirm that the three-meson bound state has a few percent fermion six-body component in the strong coupling region when expressed in terms of fermion variables, consistent with our previous calculations. We also discuss some qualitative features of the three-meson bound state based on the information about the wave function.Comment: 19 pages, RevTex, included 6 figures which are compressed and uuencode

    A New Basis Function Approach to 't Hooft-Bergknoff-Eller Equations

    Get PDF
    We analytically and numerically investigate the 't Hooft-Bergknoff-Eller equations, the lowest order mesonic Light-Front Tamm-Dancoff equations for U(N_C) and SU(N_C) gauge theories. We find the wavefunction can be well approximated by new basis functions and obtain an analytic formula for the mass of the lightest bound state. Its value is consistent with the precedent results.Comment: 16 pages, 3 figure

    bMagazine 2020

    Get PDF
    bMagazine is part annual report and part showcase of people thinking bigger and thinking differently about what's possible in communities across the Bush Foundation's region of Minnesota, North Dakota, South Dakota and the 23 Native nations that share that geography

    Variational Calculation of the Effective Action

    Get PDF
    An indication of spontaneous symmetry breaking is found in the two-dimensional λϕ4\lambda\phi^4 model, where attention is paid to the functional form of an effective action. An effective energy, which is an effective action for a static field, is obtained as a functional of the classical field from the ground state of the hamiltonian H[J]H[J] interacting with a constant external field. The energy and wavefunction of the ground state are calculated in terms of DLCQ (Discretized Light-Cone Quantization) under antiperiodic boundary conditions. A field configuration that is physically meaningful is found as a solution of the quantum mechanical Euler-Lagrange equation in the J→0J\to 0 limit. It is shown that there exists a nonzero field configuration in the broken phase of Z2Z_2 symmetry because of a boundary effect.Comment: 26 pages, REVTeX, 7 postscript figures, typos corrected and two references adde
    • 

    corecore