26,286 research outputs found

    Non-BPS D8-branes and Dynamic Domain Walls in Massive IIA Supergravities

    Get PDF
    We study the D8-branes of the Romans massive IIA supergravity theory using the coupled supergravity and worldvolume actions. D8 branes can be regarded as domain walls with the jump in the extrinsic curvature at the brane given by the Israel matching conditions. We examine the restrictions that these conditions place on extreme and non-extreme solutions and find that they rule out some of the supersymmetric solutions given by Bergshoeff {\em et al}. We consider what happens when the dilaton varies on the worldvolume of the brane, which implies that the brane is no longer static. We obtain a family of D8-brane solutions parametrized by a non-extremality term on each side of the brane and the asymptotic values of the 10-form field. The non-extremality parameters can be related to the velocity of the brane. We also study 8-brane solutions of a massive IIA supergravity theory introduced by Howe, Lambert and West. This theory also admits a 10-form formulation, but the 10-form is not a R-R sector field and so these 8-branes are not D-branes.Comment: 23 pages REVTeX, 2 .eps figures. This paper completely replaces and extends an earlier paper (hep-th/9712112) by Chamblin and Perr

    Are low-energy nuclear observables sensitive to high-energy phase shifts?

    Get PDF
    Conventional nucleon-nucleon potentials with strong short-range repulsion require contributions from high-momentum wave function components even for low-energy observables such as the deuteron binding energy. This can lead to the misconception that reproducing high-energy phase shifts is important for such observables. Interactions derived via the similarity renormalization group decouple high-energy and low-energy physics while preserving the phase shifts from the starting potential. They are used to show that high-momentum components (and high-energy phase shifts) can be set to zero when using low-momentum interactions, without losing information relevant for low-energy observables.Comment: 13 pages, 5 figures; reference and acknowledgment adde

    Formation of a Nematic Fluid at High Fields in Sr3Ru2O7

    Get PDF
    In principle, a complex assembly of strongly interacting electrons can self-organise into a wide variety of collective states, but relatively few such states have been identified in practice. We report that, in the close vicinity of a metamagnetic quantum critical point, high purity Sr3Ru2O7 possesses a large magnetoresistive anisotropy, consistent with the existence of an electronic nematic fluid. We discuss a striking phenomenological similarity between our observations and those made in high purity two-dimensional electron fluids in GaAs devices.Comment: 14 pages, 3 figures, 11 extra pages of supplementary informatio

    A possible explanation for the inconsistency between the Giotto grain mass distribution and ground-based observations

    Get PDF
    Giotto measured the in situ Halley dust grain mass distribution with 2 instruments, Particle Impact Analyzer and Dust Impact Detection System (DIDSY), as well as the total intercepted mass from the deceleration of the spacecraft (Giotto Radio-Science Experiment, GRE). Ground based observations made shortly before encounter have fluxes much higher than would be predicted from Giotto data. It is concluded that Giotto DIDSY and GRE data represent observations of dust originating from a narrow track along the nucleus. They are consistent with ground based data, if assumptions are made about the level of activity along this track. The actual size distribution that should be used for modeling of the whole coma should not include the large mass excess actually observed by Giotto. Extrapolation of the small grain data should be used, since for these grains the velocity dispersion is low and temporal changes at the nucleus would not affect the shape of the mass distribution

    The NMR of High Temperature Superconductors without Anti-Ferromagnetic Spin Fluctuations

    Full text link
    A microscopic theory for the NMR anomalies of the planar Cu and O sites in superconducting La_1.85Sr_0.15CuO_4 is presented that quantitatively explains the observations without the need to invoke anit-ferromagnetic spin fluctuations on the planar Cu sites and its significant discrepancy with the observed incommensurate neutron spin fluctuations. The theory is derived from the recently published ab-initio band structure calculations that correct LDA computations tendency to overestimate the self-coulomb repulsion for the half-filled Cu d_x2-y2 orbital for these ionic systems. The new band structure leads to two bands at the Fermi level with holes in the Cu d_z2 and apical O p_z orbitals in addition to the standard Cu d_x2-y2 and planar O p_sigma orbitals. This band structure is part of a new theory for the cuprates that explains a broad range of experiments and is based upon the formation of Cooper pairs comprised of a k up spin electron from one band and a -k down spin electron from another band (Interband Pairing Model).Comment: In Press, Journal of Physical Chemistry. See also http://www.firstprinciples.com. Minor changes to references and figure readabilit

    Nonperturbative renormalization in a scalar model within Light-Front Dynamics

    Get PDF
    Within the covariant formulation of Light-Front Dynamics, in a scalar model with the interaction Hamiltonian H=−gψ2(x)ϕ(x)H=-g\psi^{2}(x)\phi(x), we calculate nonperturbatively the renormalized state vector of a scalar "nucleon" in a truncated Fock space containing the NN, NπN\pi and NππN\pi\pi sectors. The model gives a simple example of non-perturbative renormalization which is carried out numerically. Though the mass renormalization δm2\delta m^2 diverges logarithmically with the cutoff LL, the Fock components of the "physical" nucleon are stable when L→∞L\to\infty.Comment: 22 pages, 5 figure

    Block Diagonalization using SRG Flow Equations

    Get PDF
    By choosing appropriate generators for the Similarity Renormalization Group (SRG) flow equations, different patterns of decoupling in a Hamiltonian can be achieved. Sharp and smooth block-diagonal forms of phase-shift equivalent nucleon-nucleon potentials in momentum space are generated as examples and compared to analogous low-momentum interactions ("v_lowk").Comment: 4 pages, 9 figures (pdfLaTeX

    On two dimensional coupled bosons and fermions

    Full text link
    We study complex bosons and fermions coupled through a generalized Yukawa type coupling in the large-N_c limit following ideas of Rajeev [Int. Jour. Mod. Phys. A 9 (1994) 5583]. We study a linear approximation to this model. We show that in this approximation we do not have boson-antiboson and fermion-antifermion bound states occuring together. There is a possibility of having only fermion-antifermion bound states. We support this claim by finding distributional solutions with energies lower than the two mass treshold in the fermion sector. This also has implications from the point of view of scattering theory to this model. We discuss some aspects of the scattering above the two mass treshold of boson pairs and fermion pairs. We also briefly present a gauged version of the same model and write down the linearized equations of motion.Comment: 25 pages, no figure
    • …
    corecore