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Block diagonalization using similarity renormalization group flow equations
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By choosing appropriate generators for the Similarity Renormalization Group (SRG) flow equations, different
patterns of decoupling in a Hamiltonian can be achieved. Sharp and smooth block-diagonal forms of phase-shift
equivalent nucleon-nucleon potentials in momentum space are generated as examples and compared to analogous
low-momentum interactions (“Vlow k”).
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The Similarity Renormalization Group (SRG) [1–3] applied
to internucleon interactions is a continuous series of unitary
transformations implemented as a flow equation for the
evolving Hamiltonian Hs ,

dHs

ds
= [ηs,Hs] = [[Gs,Hs],Hs]. (1)

Here s is a flow parameter and the flow operator Gs specifies
the type of SRG [4]. Decoupling between low-energy and high-
energy matrix elements is naturally achieved in a momentum
basis by choosing a momentum-diagonal flow operator such
as the kinetic energy Trel or the diagonal of Hs ; either drives
the Hamiltonian toward band-diagonal form. This decoupling
leads to dramatically improved variational convergence in few-
body nuclear systems compared to unevolved phenomenolog-
ical or chiral effective field theory (EFT) potentials [5,6].

Renormalization Group (RG) methods that evolve NN

interactions with a sharp or smooth cutoff in relative mo-
mentum, known generically as Vlow k , rely on the invariance
of the two-nucleon T matrix [7,8]. These approaches achieve
a block-diagonal form characterized by a cutoff � (see left
plots in Figs. 1 and 2). As implemented in Refs. [7,8], the
high-momentum matrix elements are defined to be zero, but
this is not required.

Block-diagonal decoupling of the sharp Vlow k form can be
generated using SRG flow equations by choosing a block-
diagonal flow operator (see Refs. [9,10] for details),

Gs =
(

PHsP 0
0 QHsQ

)
≡ H bd

s , (2)

with projection operators P and Q = 1 − P . In a partial-wave
momentum representation, P and Q are step functions defined
by a sharp cutoff � on relative momenta. This choice for
Gs , which means that ηs is nonzero only where Gs is
zero, suppresses off-diagonal matrix elements such that the
Hamiltonian approaches a block-diagonal form as s increases.
If one considers a measure of the off-diagonal coupling of the
Hamiltonian,

Tr [(QHsP )†(QHsP )] = Tr [PHsQHsP ] � 0, (3)

then its derivative is easily evaluated by applying the SRG
equation, Eq. (1):

d

ds
Tr [PHsQHsP ]

= Tr [PηsQ(QHsQHsP − QHsPHsP )]

+ Tr [(PHsPHsQ − PHsQHsQ)QηsP ]

= −2 Tr [(QηsP )†(QηsP )] � 0. (4)

Thus, the off-diagonal QHsP block will decrease in general
as s increases [9,10].

The right plots in Figs. 1 and 2 result from evolving the
N3LO potential from Ref. [11] using the block-diagonal Gs

of Eq. (2) with � = 2 fm−1 until λ ≡ 1/s1/4 = 0.5 fm−1. The
parameter λ is a quantitative measure of the progress toward
block diagonalization made by the SRG evolution. The agree-
ment between Vlow k and SRG potentials for momenta below
� is striking. A similar degree of universality is found in the
other partial waves. Deriving an explicit connection between
these approaches is the topic of an ongoing investigation.

The evolution with λ of two representative partial waves
(3S1 and 1P1) are shown in Figs. 3 and 4. The evolution of
the “off-diagonal” matrix elements (meaning those outside the
PHsP and QHsQ blocks) can be roughly understood from
the dominance of the kinetic energy on the diagonal. Let the
indices p and q run over indices of the momentum states in
the P and Q spaces, respectively. To good approximation we
can replace PHsP and QHsQ by their eigenvalues Ep and Eq

in the SRG equations, yielding [9,10]

d

ds
hpq ≈ ηpqEq − Epηpq = −(Ep − Eq)ηpq (5)

and

ηpq ≈ Ephpq − hpqEq = (Ep − Eq)hpq. (6)

Combining these two results, we have the evolution of any
off-diagonal matrix element:

d

ds
hpq ≈ −(Ep − Eq)2hpq. (7)
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FIG. 1. (Color online) Comparison of momentum-space (a) Vlow k

and (b) SRG block-diagonal potentials with � = 2 fm−1 evolved from
an N3LO 3S1 potential [11].

FIG. 2. (Color online) Comparison of momentum-space (a) Vlow k

and (b) SRG block-diagonal potentials with � = 2 fm−1 evolved from
an N3LO 3S1 potential [11].

In the NN case we can replace the eigenvalues by those for
the relative kinetic energy, giving an explicit solution

hpq(s) ≈ hpq(0)e−s(εp−εq )2
(8)

with εp ≡ p2/M . Thus the off-diagonal elements go to zero
with the energy differences just like with the SRG with Trel;
one can see the width of order 1/

√
s = λ2 in the k2 plots of

the evolving potential in Figs. 3 and 4.
While in principle the evolution to a sharp block-diagonal

form means going to s = ∞(λ = 0), in practice we need
only take s as large as needed to quantitatively achieve the
decoupling implied by Eq. (8). Furthermore, it should hold for
more general definitions of P and Q. To smooth out the cutoff,
we can introduce a smooth regulator f�, which we take here
to be an exponential form:

f�(k) = e−(k2/�2)n , (9)

with n an integer. For Vlow k potentials, typical values used are
n = 4 and n = 8 (the latter is considerably sharper but still
numerically robust). By replacing H bd

s with

Gs = f�Hsf� + (1 − f�)Hs(1 − f�), (10)

we get a smooth block-diagonal potential.
A representative example with � = 2 fm−1 and n = 4 is

shown in Fig. 5. We can evolve to λ = 1.5 fm−1 without a
problem. For smaller λ the overlap of the P and Q spaces
becomes significant and the potential becomes distorted. This
distortion indicates that there is no further benefit to evolving

FIG. 3. (Color online) Evolution of the 3S1 partial wave with a sharp block-diagonal flow equation with � = 2 fm−1 at λ = 4, 3, 2, and
1 fm−1. The initial N3LO potential is from Ref. [11].

FIG. 4. (Color online) Same as Fig. 3 but for the 1P1 partial wave.
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FIG. 5. (Color online) Evolution of the 3S1 partial wave with a smooth (n = 4) block-diagonal flow equation with � = 2.0 fm−1, starting
with the N3LO potential from Ref. [11]. The flow parameter λ is 3, 2, 1.5, and 1 fm−1.

in λ very far below �; in fact the decoupling worsens for
λ < � with a smooth regulator.

Another type of SRG that is second-order exact and yields
similar block diagonalization is defined by

ηs = [T , PVsQ + QVsP ], (11)

which can be implemented with P → f� and Q → (1 − f�),
with f� either sharp or smooth. We can also consider bizarre
choices for f� in Eq. (10), such as defining it to be zero
out to �lower, then unity out to �, and then zero above that.
This means that 1 − f� defines both low and high-momentum
blocks and the region that is driven to zero consists of several
rectangles. Results for two partial waves starting from the
Argonne v18 potential [12] are shown in Fig. 6. Despite

FIG. 6. (Color online) Evolved SRG potentials starting from
Argonne v18 in the (a) 1S0 and (b) 1P1 partial waves to λ = 1 fm−1

using a bizarre choice for Gs (see text).
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FIG. 7. (Color online) Phase shifts for the 3S1 partial wave from
an initial N3LO potential and the evolved sharp SRG block-diagonal
potential with � = 2 fm−1 at various λ, in each case with the potential
set identically to zero above �.
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FIG. 8. (Color online) Same as Fig. 7 but with Argonne v18 as the
initial potential [12].
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FIG. 9. (Color online) Errors in the phase shift at Elab = 100 MeV
for the evolved sharp SRG block-diagonal potential with � = 2 fm−1

for a range of λ’s and a regulator with n = 8.

the strange appearance, these remain unitary transformations
of the original potential, with phase shifts and other NN

observables the same as with the original potential. These
choices provide a proof-of-principle that the decoupled regions
can be tailored to the physics problem at hand.

Definitive tests of decoupling for NN observables are now
possible for Vlow k potentials since the unitary transformation
of the SRG guarantees that no physics is lost. For example,
in Figs. 7 and 8 we show 3S1 phase shifts from an SRG
sharp block diagonalization with � = 2 fm−1 for two different
potentials. The phase shifts are calculated with the potentials
cut sharply at �. That is, the matrix elements of the potential
are set to zero above that point. The improved decoupling as

λ decreases is evident in each case. By λ = 1 fm−1 in Fig. 7,
the unevolved and evolved curves are indistinguishable to the
width of the line up to about 300 MeV.

In Fig. 9 we show a quantitative analysis of the decoupling
as in Ref. [13]. The figure shows the relative error of the phase
shift at 100 MeV calculated with a potential that is cut off
by a smooth regulator as in Eq. (9) at a series of values �cut.
We observe the same universal decoupling behavior seen in
Ref. [13]: a shoulder indicating the perturbative decoupling
region, where the slope matches the power 2n fixed by the
smooth regulator. The onset of the shoulder in �cut decreases
with λ until it saturates for λ somewhat below �, leaving the
shoulder at �cut ≈ �. Thus, as λ → 0 the decoupling scale is
set by the cutoff �.

In the more conventional SRG, where we use ηs =
[T ,Hs] = [T , Vs], it is easy to see that the evolution of the two-
body potential in the two-particle system can be carried over
directly to the three-particle system. In particular, it follows
that the three-body potential does not depend on disconnected
two-body parts [4,14]. If we could implement ηs as proposed
here with analogous properties, we would have a tractable
method for generating Vlow k three-body forces. While it seems
possible to define Fock-space operators with projectors P and
Q that will not have problems with disconnected parts, it is
not yet clear whether full decoupling in the few-body space
can be realized. Work on this problem is in progress.
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