2,804 research outputs found
Determinants of Childhood Zoonotic Enteric Infections in a Semirural Community of Quito, Ecuador.
Domestic animals in the household environment have the potential to affect a child's carriage of zoonotic enteric pathogens and risk of diarrhea. This study examines the risk factors associated with pediatric diarrhea and carriage of zoonotic enteric pathogens among children living in communities where smallholder livestock production is prevalent. We conducted an observational study of children younger than 5 years that included the analysis of child (n = 306) and animal (n = 480) fecal samples for Campylobacter spp., atypical enteropathogenic Escherichia coli, Shiga toxin-producing E. coli, Salmonella spp., Yersinia spp., Cryptosporidium parvum, and Giardia lamblia. Among these seven pathogens, Giardia was the most commonly identified pathogen among children and animals in the same household, most of which was found in child-dog pairs. Campylobacter spp. was also relatively common within households, particularly among child-chicken and child-guinea pig pairs. We used multivariable Poisson regression models to assess risk factors associated with a child being positive for at least one zoonotic enteric pathogen or having diarrhea during the last week. Children who interacted with domestic animals-a behavior reported by nearly three-quarters of households owning animals-were at an increased risk of colonization with at least one zoonotic enteric pathogen (prevalence ratio [PR] = 1.56, 95% CI: 1.00-2.42). The risk of diarrhea in the last seven days was elevated but not statistically significant (PR = 2.27, CI: 0.91, 5.67). Interventions that aim to reduce pediatric exposures to enteric pathogens will likely need to be incorporated with approaches that remove animal fecal contamination from the domestic environment and encourage behavior change aimed at reducing children's contact with animal feces through diverse exposure pathways
A pyrene-appended spiropyran for selective photo-switchable binding of Zn(II): UV-visible and fluorescence spectroscopy studies of binding and non-covalent attachment to graphene, graphene oxide and carbon nanotubes
PublishedArticleSynthesis of photo-switchable, Zn2+ sensitive hybrid materials was achieved by facile non-covalent functionalization of graphene, graphene oxide and carbon nanotubes with a pyrene-appended spiropyran. Solution phase binding studies, using UV–visible and fluorescence spectroscopy, indicated that the pyrene-spiropyran dyad was highly selective for Zn2+ over a range of potentially competitive cations and that binding occurred with 1:1 stoichiometry and a binding constant of K=1.4×104 mol−1 dm3 at 295 K. Zn2+ binding was promoted by UV irradiation or in darkness and reversed upon irradiation with visible light.Engineering & Physical Sciences Research Council (EPSRC
Relationships Effecting College Students’ Perception of Family Influence Impacting their Health and Lifestyle
The purpose of this cross-sectional, nonexperimental descriptive design study was to determine college students’ perception of family influence impacting their health and lifestyle. The sample included 120 college students in a faithbased institution and each student completed a Likert-type survey (4-point agreement scale) that investigated their perception of health, and the degree of influence peers and family had on their health. This second data analysis reports correlations between variables and group differences related to health perceptions and behaviours. The strongest correlation is between ‘family demonstration of positive health habits’ and ‘personal health practices being like my families’ (r = 0.671, p \u3c 0.01), a moderate relationship supported by other weaker positive correlations to specific health outcomes. Negative correlations between ‘my friends display more positive health habits than family’ and both ‘family has influenced my idea of health’ and ‘my health practices are similar to my family’ indicate the potential for other contextual factors to effect family impact. While differences relating to health influence and outcomes between groups formed by age, gender, ethnicity, family structure and religion were found, the variable related to most healthy lifestyle transmission elements was ‘My family demonstrates positive health habits’. Recommendations supporting improved societal health are offered, together with suggestions for further research. Group classifications that are fixed but might inform interactions with elements of cohorts are identified, together with group memberships which might be changed to enhance health options. Caution in the generalisation of these findings is advised due to the explained limitations of this study
FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that control a diverse range of biological processes during development and in adult tissues. We recently reported that somatic FGFR2 mutations are associated with shorter survival in endometrial cancer. However, little is known about how these FGFR2 mutations contribute to endometrial cancer metastasis. Here, we report that expression of the activating mutations FGFR2N550K and FGFR2Y376C in an endometrial cancer cell model induce Golgi fragmentation, and loss of polarity and directional migration. In mutant FGFR2-expressing cells, this was associated with an inability to polarise intracellular pools of FGFR2 towards the front of migrating cells. Such polarization defects were exacerbated in three-dimensional culture, where FGFR2 mutant cells were unable to form well-organised acini, instead undergoing exogenous ligand-independent invasion. Our findings uncover collective cell polarity and invasion as common targets of disease-associated FGFR2 mutations that lead to poor outcome in endometrial cancer patients
Absorption Properties of a Porous Organic Crystalline Apohost Formed by a Self-Assembled Bis-Urea Macrocycle
We report herein the characterization and binding properties of a microporous crystalline host formed by the self assembly of a bis-urea macrocycle 1. Bis-urea macrocycle 1 has been designed to crystallize into stacked hollow columns. The self-assembly process is guided primarily by hydrogen bonding and aromatic stacking interactions that yield crystals of filled host 1âacetic acid (AcOH). The AcOH guests are bound in the cylindrical cavities of the crystal. The guest AcOH can be removed by heating to form a stable crystalline apohost 1. Apohost 1 displays a type I gas adsorption isotherm with CO2 that is consistent with an open framework microporous material. Apohost 1 binds a range of small molecule guests with specific stoichiometry. The formation of these inclusion complexes does not destroy the crystal framework and therefore apohost 1 can be reused, much like a zeolite. We investigated the structure of apohost 1 and its inclusion complexes by powder X-ray diffraction. The ability of guests to bind and their stoichiometry could be rationalized on the basis of the size, shape, and polarity of the guest molecules. Finally, the shape selectivity of these self-assembled porous materials was demonstrated in competition studies in which apohost 1 preferentially bound p-xylene from a mixture of xylene isomers
Improving Biopharmaceutical Properties of Vinpocetine Through Cocrystallization
Vinpocetine is a poorly water soluble weakly basic drug (pKa \ubc 7.1) used for the treatment of several cerebrovascular and cognitive disorders. Because existing formulations exhibit poor bioavailability and scarce absorption, a dosage form with improved pharmacokinetic properties is highly desirable. Cocrystallization represents a promising approach to generate diverse novel crystal forms and to improve the aqueous solubility and in turn the oral bioavailability. In this article, a novel ionic cocrystal of vinpocetine is described, using boric acid as a coformer, and fully characterized (by means of differential scanning calorimetry, solid-state nuclear magnetic resonance, powder and singlecrystal X-ray diffraction, and powder dissolution test). Pharmacokinetic performance was also tested in a human pilot study. This pharmaceutical ionic cocrystal exhibits superior solubilization kinetics and modulates important pharmacokinetic values such as maximum concentration in plasma (Cmax), time to maximum concentration (tmax), and area under the plasma concentration-time curve (AUC) of the poorly soluble vinpocetine and it therefore offers an innovative approach to improve its bioavailability
Facet-resolved electrochemistry of polycrystalline boron-doped diamond electrodes : microscopic factors determining the aqueous solvent window in aqueous potassium chloride solutions
A systematic examination of the microscopic factors affecting the aqueous solvent (electrolyte) window of polycrystalline (p) boron-doped diamond (BDD) electrodes in chloride-containing salt solutions is undertaken using scanning electrochemical cell microscopy (SECCM), in conjunction with electron backscatter diffraction (EBSD) and Raman microscopy. A major focus is to determine the effect of local boron doping level, within the same orientation grains, on the solvent window response. EBSD is used to select the predominant (110) orientated areas of the surface with different boron-doped facets, thereby eliminating crystallographic effects from the electrochemical response. Voltammetric SECCM is employed, whereby a cyclic voltammogram (CV) is recorded at each pixel mapped by the meniscus-contact SECCM cell. The data obtained can be played as an electrochemical movie of potential-resolved current maps of the surface to reveal spatial variations of electroactivity, over a wide potential range, including the solvent (electrolyte) window. Local heterogeneities are observed, indicating that the solvent window is mainly linked to local dopant levels, with lower dopant levels leading to a wider window, i.e. slower electrode kinetics for solvent/electrolyte electrolysis. Furthermore, the effects of O- and H-surface termination of the BDD surface are investigated, for the same electrode (in the same area). The surface termination is a particularly important factor: the solvent window of an H-terminated surface is wider than for O-termination for similar boron dopant levels. Further, the anodic potential window of the O-terminated surface is greatly diminished due to chloride electro-oxidation. These studies provide new perspectives on the local electrochemical properties of BDD and highlight the importance of probing the electrochemistry of BDD at the level of a single crystalline grain (facet) in order to unravel the factors that control the solvent (aqueous) window of these complex heterogeneous electrodes
Coastal vegetation responses to large dam removal on the Elwha River
IntroductionLarge dam removals provide a restoration opportunity for shrinking coastal wetland habitats. Dam removal can increase sediment delivery to sediment-starved river deltas and estuaries by restoring natural sediment transport and mobilizing reservoir-impounded sediment. However, rapid mobilization of massive quantities of sediment stored behind large dams also constitutes a major ecological perturbation. Information is lacking on coastal habitat responses to sediment pulses of this magnitude.MethodsRemoval of two large dams along the Elwha River (Washington, USA) in 2011–2014 released ~20.5 Mt of impounded sediment, ~5.4 Mt of which were deposited in the delta and estuary (hereafter, delta). We used time series of aerial imagery, digital elevation models, and vegetation field sampling to examine plant community responses to this sediment pulse across seven years during and after dam removal.ResultsBetween 2011 and 2018, the Elwha River delta increased by ~26.8 ha. Vegetation colonized ~16.4 ha of new surfaces, with mixed pioneer vegetation on supratidal beach, river bars, and river mouth bars and emergent marsh vegetation in intertidal aquatic habitats. Colonization occurred on surfaces that were higher and more stable in elevation and farther from the shoreline. Compared to established delta plant communities, vegetation on new surfaces had lower cover of dominant species and functional groups, with very low woody cover, and lower graminoid cover than dunegrass and emergent marsh communities. Over time following surface stabilization, however, vegetation on new surfaces increased in species richness, cover, and similarity to established communities. By 2018, ~1.0 ha of vegetation on new surfaces had developed into dunegrass or willow–alder communities and ~5.9 ha had developed into emergent marsh. At the same time, dam removal had few discernible effects on established delta plant communities.DiscussionTogether, these results suggest that rapid sediment mobilization during large dam removal has potential to expand coastal wetland habitat without negatively affecting established plant communities. However, as sediment loads declined in 2016–2018, new delta surfaces decreased by ~4.5 ha, and ~1.6 ha of new vegetation reverted to no vegetation. Long-term persistence of the expanded coastal habitat will depend on ongoing erosional and depositional processes under the restored natural sediment regime
Be X-ray binaries in the SMC as indicators of mass transfer efficiency
Be X-ray binaries (BeXRBs) consist of rapidly rotating Be stars with neutron
star companions accreting from the circumstellar emission disk. We compare the
observed population of BeXRBs in the Small Magellanic Cloud with simulated
populations of BeXRB-like systems produced with the COMPAS population synthesis
code. We focus on the apparently higher minimal mass of Be stars in BeXRBs than
in the Be population at large. Assuming that BeXRBs experienced only
dynamically stable mass transfer, their mass distribution suggests that at
least 30% of the mass donated by the progenitor of the neutron star is
typically accreted by the B-star companion. We expect these results to affect
predictions for the population of double compact object mergers. A convolution
of the simulated BeXRB population with the star formation history of the Small
Magellanic Cloud shows that the excess of BeXRBs is most likely explained by
this galaxy's burst of star formation around 20--40 Myr ago
Antenatal atazanavir: a retrospective analysis of pregnancies exposed to atazanavir.
INTRODUCTION: There are few data regarding the tolerability, safety, or efficacy of antenatal atazanavir. We report our clinical experience of atazanavir use in pregnancy.
METHODS: A retrospective medical records review of atazanavir-exposed pregnancies in 12 London centres between 2004 and 2010.
RESULTS: There were 145 pregnancies in 135 women: 89 conceived whilst taking atazanavir-based combination antiretroviral therapy (cART), "preconception" atazanavir exposure; 27 started atazanavir-based cART as "first-line" during the pregnancy; and 29 "switched" to an atazanavir-based regimen from another cART regimen during pregnancy. Gastrointestinal intolerance requiring atazanavir cessation occurred in five pregnancies. Self-limiting, new-onset transaminitis was most common in first-line use, occurring in 11.0%. Atazanavir was commenced in five switch pregnancies in the presence of transaminitis, two of which discontinued atazanavir with persistent transaminitis. HIV-VL < 50 copies/mL was achieved in 89.3% preconception, 56.5% first-line, and 72.0% switch exposures. Singleton preterm delivery (<37 weeks) occurred in 11.7% preconception, 9.1% first-line, and 7.7% switch exposures. Four infants required phototherapy. There was one mother-to-child transmission in a poorly adherent woman.
CONCLUSIONS: These data suggest that atazanavir is well tolerated and can be safely prescribed as a component of combination antiretroviral therapy in pregnancy
- …