435 research outputs found

    A statistical multiresolution approach for face recognition using structural hidden Markov models

    Get PDF
    This paper introduces a novel methodology that combines the multiresolution feature of the discrete wavelet transform (DWT) with the local interactions of the facial structures expressed through the structural hidden Markov model (SHMM). A range of wavelet filters such as Haar, biorthogonal 9/7, and Coiflet, as well as Gabor, have been implemented in order to search for the best performance. SHMMs perform a thorough probabilistic analysis of any sequential pattern by revealing both its inner and outer structures simultaneously. Unlike traditional HMMs, the SHMMs do not perform the state conditional independence of the visible observation sequence assumption. This is achieved via the concept of local structures introduced by the SHMMs. Therefore, the long-range dependency problem inherent to traditional HMMs has been drastically reduced. SHMMs have not previously been applied to the problem of face identification. The results reported in this application have shown that SHMM outperforms the traditional hidden Markov model with a 73% increase in accuracy

    A detailed radio study of the energetic, nearby, and puzzling GRB 171010A

    Get PDF
    We present the results of an intensive multi-epoch radio frequency campaign on the energetic and nearby GRB 171010A with the Karl G. Janksy Very Large Array and Arcminute Microkelvin Imager Large Array. We began observing GRB 171010A a day after its initial detection, and were able to monitor the temporal and spectral evolution of the source over the following weeks. The spectra and their evolution are compared to the canonical theories for broadband GRB afterglows, with which we find a general agreement. There are, however, a number of features that are challenging to explain with a simple forward shock model, and we discuss possible reasons for these discrepancies. This includes the consideration of the existence of a reverse shock component, potential microphysical parameter evolution and the effect of scintillation

    Rapid radio flaring during an anomalous outburst of SS Cyg

    Get PDF
    The connection between accretion and jet production in accreting white dwarf binary systems, especially dwarf novae, is not well understood. Radio wavelengths provide key insights into the mechanisms responsible for accelerating electrons, including jets and outflows. Here, we present densely sampled radio coverage, obtained with the Arcminute MicroKelvin Imager Large Array, of the dwarf nova SS Cyg during its 2016 February anomalous outburst. The outburst displayed a slower rise (3 dmag-1) in the optical than typical ones and lasted for more than three weeks. Rapid radio flaring on time-scales <1 h was seen throughout the outburst. The most intriguing behaviour in the radio was towards the end of the outburst where a fast, luminous ('giant'), flare peaking at ~20 mJy and lasting for 15 min was observed. This is the first time that such a flare has been observed in SS Cyg and insufficient coverage could explain its non-detection in previous outbursts. These data, together with past radio observations, are consistent with synchrotron emission from plasma ejection events as being the origin of the radio flares. However, the production of the giant flare during the declining accretion rate phase remains unexplained within the standard accretion-jet framework and appears to be markedly different to similar patterns of behaviour in X-ray binaries

    The QUIJOTE experiment: project overview and first results

    Full text link
    QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range 10-40 GHz. The multi-frequency (10-20~GHz) instrument, mounted on the first QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory (2400~m a.s.l). During 2014 the second telescope has been installed at this observatory. A second instrument at 30~GHz will be ready for commissioning at this telescope during summer 2015, and a third additional instrument at 40~GHz is now being developed. These instruments will have nominal sensitivities to detect the B-mode polarization due to the primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05.Comment: To appear in "Highlights of Spanish Astrophysics VIII", Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society, Teruel, Spain (2014

    AMI-LA Observations of the SuperCLASS Super-cluster

    Get PDF
    We present a deep survey of the SuperCLASS super-cluster - a region of sky known to contain five Abell clusters at redshift z0.2z\sim0.2 - performed using the Arcminute Microkelvin Imager (AMI) Large Array (LA) at 15.5 ~GHz. Our survey covers an area of approximately 0.9 square degrees. We achieve a nominal sensitivity of 32.0 μ32.0~\muJy beam1^{-1} toward the field centre, finding 80 sources above a 5σ5\sigma threshold. We derive the radio colour-colour distribution for sources common to three surveys that cover the field and identify three sources with strongly curved spectra - a high-frequency-peaked source and two GHz-peaked-spectrum sources. The differential source count (i) agrees well with previous deep radio source count, (ii) exhibits no evidence of an emerging population of star-forming galaxies, down to a limit of 0.24 ~mJy, and (iii) disagrees with some models of the 15 ~GHz source population. However, our source count is in agreement with recent work that provides an analytical correction to the source count from the SKADS Simulated Sky, supporting the suggestion that this discrepancy is caused by an abundance of flat-spectrum galaxy cores as-yet not included in source population models.Comment: 17 pages, 14 figures, 3 tables. Accepted for publication in MNRA

    A Multi-telescope Campaign on FRB 121102: Implications for the FRB Population

    Full text link
    We present results of the coordinated observing campaign that made the first subarcsecond localization of a Fast Radio Burst, FRB 121102. During this campaign, we made the first simultaneous detection of an FRB burst by multiple telescopes: the VLA at 3 GHz and the Arecibo Observatory at 1.4 GHz. Of the nine bursts detected by the Very Large Array at 3 GHz, four had simultaneous observing coverage at other observatories. We use multi-observatory constraints and modeling of bursts seen only at 3 GHz to confirm earlier results showing that burst spectra are not well modeled by a power law. We find that burst spectra are characterized by a ~500 MHz envelope and apparent radio energy as high as 104010^{40} erg. We measure significant changes in the apparent dispersion between bursts that can be attributed to frequency-dependent profiles or some other intrinsic burst structure that adds a systematic error to the estimate of DM by up to 1%. We use FRB 121102 as a prototype of the FRB class to estimate a volumetric birth rate of FRB sources RFRB5x105/NrR_{FRB} \approx 5x10^{-5}/N_r Mpc3^{-3} yr1^{-1}, where NrN_r is the number of bursts per source over its lifetime. This rate is broadly consistent with models of FRBs from young pulsars or magnetars born in superluminous supernovae or long gamma-ray bursts, if the typical FRB repeats on the order of thousands of times during its lifetime.Comment: 17 pages, 7 figures. Submitted to AAS Journal

    A blind detection of a large, complex, Sunyaev--Zel'dovich structure

    Get PDF
    We present an interesting Sunyaev-Zel'dovich (SZ) detection in the first of the Arcminute Microkelvin Imager (AMI) 'blind', degree-square fields to have been observed down to our target sensitivity of 100{\mu}Jy/beam. In follow-up deep pointed observations the SZ effect is detected with a maximum peak decrement greater than 8 \times the thermal noise. No corresponding emission is visible in the ROSAT all-sky X-ray survey and no cluster is evident in the Palomar all-sky optical survey. Compared with existing SZ images of distant clusters, the extent is large (\approx 10') and complex; our analysis favours a model containing two clusters rather than a single cluster. Our Bayesian analysis is currently limited to modelling each cluster with an ellipsoidal or spherical beta-model, which do not do justice to this decrement. Fitting an ellipsoid to the deeper candidate we find the following. (a) Assuming that the Evrard et al. (2002) approximation to Press & Schechter (1974) correctly gives the number density of clusters as a function of mass and redshift, then, in the search area, the formal Bayesian probability ratio of the AMI detection of this cluster is 7.9 \times 10^4:1; alternatively assuming Jenkins et al. (2001) as the true prior, the formal Bayesian probability ratio of detection is 2.1 \times 10^5:1. (b) The cluster mass is MT,200 = 5.5+1.2\times 10^14h-1M\odot. (c) Abandoning a physical model with num- -1.3 70 ber density prior and instead simply modelling the SZ decrement using a phenomenological {\beta}-model of temperature decrement as a function of angular distance, we find a central SZ temperature decrement of -295+36 {\mu}K - this allows for CMB primary anisotropies, receiver -15 noise and radio sources. We are unsure if the cluster system we observe is a merging system or two separate clusters.Comment: accepted MNRAS. 12 pages, 9 figure
    corecore