2,437 research outputs found
Structure of the Local-field factor of the 2-D electron fluid. Possible evidence for correlated scattering of electron pairs
The static local-field factor (LFF) of the 2-D electron fluid is calculated
{\it nonperturbatively} using a mapping to a classical Coulomb fluid
Phys. Rev. Lett., {\bf 87}, 206. The LFF for the paramagnetic
fluid {\it differs markedly} from perturbation theory where a maximum near
2 is expected. Our LFF has a quasi-linear small-k region leading to a
maximum close to 3, in agreent with currently available quantum Monte
Carlo data. The structure in the LFF and its dependence on the density and
temperature are interpretted as a signature of correlated scattering of
electron pairs of opposite spin.The lack of structure at implies
weakened Friedel oscillations, Kohn anomalies etc.Comment: 4 pages, 3 figures, version 2 of condmat/0304034, see
http://nrcphy1.phy.nrc.ca/ims/qp/chandre/chnc/ Changs in the text, figure 2
and updated reference
The Equation of State and the Hugoniot of Laser Shock-Compressed Deuterium
The equation of state and the shock Hugoniot of deuterium are calculated
using a first-principles approach, for the conditions of the recent shock
experiments. We use density functional theory within a classical mapping of the
quantum fluids [ Phys. Rev. Letters, {\bf 84}, 959 (2000) ]. The calculated
Hugoniot is close to the Path-Integral Monte Carlo (PIMC) result. We also
consider the {\it quasi-equilibrium} two-temperature case where the Deuterons
are hotter than the electrons; the resulting quasi-equilibrium Hugoniot mimics
the laser-shock data. The increased compressibility arises from hot
pairs occuring close to the zero of the electron chemical potential.Comment: Four pages; One Revtex manuscript, two postscipt figures; submitted
to PR
Spin-polarized stable phases of the 2-D electron fluid at finite temperatures
The Helmholtz free energy F of the interacting 2-D electron fluid is
calculated nonperturbatively using a mapping of the quantum fluid to a
classical Coulomb fluid [Phys. Rev. Letters, vol. 87, 206404 (2001)]. For
density parameters rs such that rs<~25, the fluid is unpolarized at all
temperatures t=T/EF where EF is the Fermi energy. For lower densities, the
system becomes fully spin polarized for t<~0.35, and partially polarized for
0.35<t< 2, depending on the density. At rs ~25-30, and t ~0.35, an ''ambispin''
phase where F is almost independent of the spin polarization is found. These
results support recent claims, based on quantum Monte Carlo results, for a
stable, fully spin-polarized fluid phase at T = 0 for rs larger than about
25-26.Comment: Latex manuscript (4-5 pages) and two postscript figures; see also
http://nrcphy1.phy.nrc.ca/ims/qp/chandre/chnc
Analysis of transition forms towards more ecologically-oriented farming: the case of organic farming and integrated crop protection
Interdisciplinary approaches developed concerning the conversion to organic farming show that the types of conversion trajectories can be differentiated on the basis of the progression of crop protection changes within a larger framework where relationships to other “objects” are transformed – the soil, products, rotations, work organisation, marketing, social networks and knowledge acquisition. In the case of integrated plant production, the extent of changes depends on the degree of recomposition of agronomic practices. This transition implies major knowledge acquisition that relies on the support and contribution of advisors and on the group dynamics that develop within a group of farmers. Transitions towards integrated crop protection are, by their nature, more reversible and therefore more fragile than the conversion to organic farming. This is due to the fact that they are not stabilised by a certification or by the market, and analysis shows that their sustainability is linked in part to their integration within a group dynamics
First direct observation of two protons in the decay of Fe with a TPC
The decay of the ground-state two-proton emitter 45Fe was studied with a
time-projection chamber and the emission of two protons was unambiguously
identified. The total decay energy and the half-life measured in this work
agree with the results from previous experiments. The present result
constitutes the first direct observation of the individual protons in the
two-proton decay of a long-lived ground-state emitter. In parallel, we
identified for the first time directly two-proton emission from 43Cr, a known
beta-delayed two-proton emitter. The technique developped in the present work
opens the way to a detailed study of the mechanism of ground-state as well as
beta-delayed two-proton radioactivity.Comment: 4 pages, 5 figure
The 2-D electron gas at arbitrary spin polarizations and arbitrary coupling strengths: Exchange-correlation energies, distribution functions and spin-polarized phases
We use a recent approach [Phys. Rev. Letters, {\bf 84}, 959 (2000)] for
including Coulomb interactions in quantum systems via a classical mapping of
the pair-distribution functions (PDFs) for a study of the 2-D electron gas. As
in the 3-D case, the ``quantum temperature'' T_q of a classical 2-D Coulomb
fluid which has the same correlation energy as the quantum fluid is determined
as a function of the density parameter r_s. Spin-dependent exchange-correlation
energies are reported. Comparisons of the spin-dependent pair-distributions and
other calculated properties with any available 2-D quantum Monte Carlo (QMC)
results show excellent agreement, strongly favouring more recent QMC data. The
interesting novel physics brought to light by this study are: (a) the
independently determined quantum-temperatures for 3-D and 2-D are found to be
approximately the same, (i.e, universal) function of the classical coupling
constant Gamma. (b) the coupling constant Gamma increases rapidly with r_s in
2-D, making it comparatively more coupled than in 3-D; the stronger coupling in
2-D requires bridge corrections to the hyper- netted-chain method which is
adequate in 3-D; (c) the Helmholtz free energy of spin-polarized and
unpolarized phases have been calculated. The existence of a spin-polarized 2-D
liquid near r_s = 30, is found to be a marginal possibility. These results
pertain to clean uniform 2-D electron systems.Comment: This paper replaces the cond-mat/0109228 submision; the new version
include s more accurate numerical evaluation of the Helmholtz energies of the
para- and ferromagentic 2D fluides at finite temperatures. (Paper accepted
for publication in Phys. Rev. Lett.
Cosmic-ray propagation properties for an origin in SNRs
We have studied the impact of cosmic-ray acceleration in SNR on the spectra
of cosmic-ray nuclei in the Galaxy using a series expansion of the propagation
equation, which allows us to use analytical solutions for part of the problem
and an efficient numerical treatment of the remaining equations and thus
accurately describes the cosmic-ray propagation on small scales around their
sources in three spatial dimensions and time. We found strong variations of the
cosmic-ray nuclei flux by typically 20% with occasional spikes of much higher
amplitude, but only minor changes in the spectral distribution. The locally
measured spectra of primary cosmic rays fit well into the obtained range of
possible spectra. We further showed that the spectra of the secondary element
Boron show almost no variations, so that the above findings also imply
significant fluctuations of the Boron-to-Carbon ratio. Therefore the commonly
used method of determining CR propagation parameters by fitting
secondary-to-primary ratios appears flawed on account of the variations that
these ratios would show throughout the Galaxy.Comment: Accepted for publication in Ap
The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event
Proxima Centauri, our closest stellar neighbour, is a low-mass M5 dwarf
orbiting in a triple system. An Earth-mass planet with an 11 day period has
been discovered around this star. The star's mass has been estimated only
indirectly using a mass-luminosity relation, meaning that large uncertainties
affect our knowledge of its properties. To refine the mass estimate, an
independent method has been proposed: gravitational microlensing. By taking
advantage of the close passage of Proxima Cen in front of two background stars,
it is possible to measure the astrometric shift caused by the microlensing
effect due to these close encounters and estimate the gravitational mass of the
lens (Proxima Cen). Microlensing events occurred in 2014 and 2016 with impact
parameters, the closest approach of Proxima Cen to the background star, of
1\farcs6 0\farcs1 and 0\farcs5 0\farcs1, respectively. Accurate
measurements of the positions of the background stars during the last two years
have been obtained with HST/WFC3, and with VLT/SPHERE from the ground. The
SPHERE campaign started on March 2015, and continued for more than two years,
covering 9 epochs. The parameters of Proxima Centauri's motion on the sky,
along with the pixel scale, true North, and centering of the instrument
detector were readjusted for each epoch using the background stars visible in
the IRDIS field of view. The experiment has been successful and the astrometric
shift caused by the microlensing effect has been measured for the second event
in 2016. We used this measurement to derive a mass of
0.150 (an error of 40\%) \MSun for Proxima
Centauri acting as a lens. This is the first and the only currently possible
measurement of the gravitational mass of Proxima Centauri.Comment: 10 pages, 6 figures, accepted by MNRA
Effectiveness and Overall Safety of NutropinAq (R) for Growth Hormone Deficiency and Other Paediatric Growth Hormone Disorders: Completion of the International Cooperative Growth Study, NutropinAq (R) European Registry (iNCGS)
Objective: The International Cooperative Growth Study, NutropinAq® European Registry (iNCGS) (NCT00455728) monitored long-term safety and effectiveness of recombinant human growth hormone (rhGH; NutropinAq® [somatropin]) in paediatric growth disorders.
Methods: Open-label, non-interventional, post-marketing surveillance study recruiting children with growth disorders. Endpoints included gain in height standard deviation score (SDS), adult height, and occurrence of adverse events (AEs).
Results: 2792 patients were enrolled. 2082 patients (74.6%) had growth hormone deficiency (GHD), which was isolated idiopathic in 1825 patients (87.7%). Non-GHD diagnoses included Turner syndrome (TS) (n=199), chronic renal insufficiency (CRI) (n=10), other non-GHD (n=498), and missing data for three participants. Improvements from baseline height SDS occurred at all time points to Month 132, and in all subgroups by disease aetiology. At Month 12, mean (95% CI) change in height SDS by aetiology was: idiopathic GHD 0.63 (0.61;0.66), organic GHD 0.71 (0.62;0.80), TS 0.59 (0.53; 0.65), CRI 0.54 (-0.49;1.56), and other non-GHD 0.64 (0.59;0.69). Mean height ( ± SD) at the last visit among the 235 patients with adult or near-adult height recorded was 154.0 cm ( ± 8.0) for girls and 166.7 cm ( ± 8.0) for boys. The most frequent biological and clinical non-serious drug-related AEs were increased insulin-like growth factor concentrations (314 events) and injection site haematoma (99 events). Serious AEs related to rhGH according to investigators were reported (n=30); the most frequent were scoliosis (4 events), epiphysiolysis (3 events), and strabismus (2 events).
Conclusions: There was an improvement in mean height SDS in all aetiology subgroups after rhGH treatment. No new safety concerns were identified
- …