3,296 research outputs found
Idealized Slab Plasma approach for the study of Warm Dense Matter
Recently, warm dense matter (WDM) has emerged as an interdisciplinary field
that draws increasing interest in plasma physics, condensed matter physics,
high pressure science, astrophysics, inertial confinement fusion, as well as
materials science under extreme conditions. To allow the study of well-defined
WDM states, we have introduced the concept of idealized-slab plasmas that can
be realized in the laboratory via (i) the isochoric heating of a solid and (ii)
the propagation of a shock wave in a solid. The application of this concept
provides new means for probing the dynamic conductivity, equation of state,
ionization and opacity. These approaches are presented here using results
derived from first-principles (density-functional type) theory, Thomas-Fermi
type theory, and numerical simulations.Comment: 37 pages, 21 figures, available, pdf file only. To appear in: Laser
and Particle beams. To appear more or less in this form in Laser and Particle
beam
Hypersensitive reaction of Solanum dulcamara to the gal mite Aceria cladophthirus causes an increased susceptibility to Tetranychus urticae
Hypersensitive reaction of Solanum dulcamara to the gall mite Aceria cladophthirus causes an increased susceptibility to Tetranychus urticae
The 2-D electron gas at arbitrary spin polarizations and arbitrary coupling strengths: Exchange-correlation energies, distribution functions and spin-polarized phases
We use a recent approach [Phys. Rev. Letters, {\bf 84}, 959 (2000)] for
including Coulomb interactions in quantum systems via a classical mapping of
the pair-distribution functions (PDFs) for a study of the 2-D electron gas. As
in the 3-D case, the ``quantum temperature'' T_q of a classical 2-D Coulomb
fluid which has the same correlation energy as the quantum fluid is determined
as a function of the density parameter r_s. Spin-dependent exchange-correlation
energies are reported. Comparisons of the spin-dependent pair-distributions and
other calculated properties with any available 2-D quantum Monte Carlo (QMC)
results show excellent agreement, strongly favouring more recent QMC data. The
interesting novel physics brought to light by this study are: (a) the
independently determined quantum-temperatures for 3-D and 2-D are found to be
approximately the same, (i.e, universal) function of the classical coupling
constant Gamma. (b) the coupling constant Gamma increases rapidly with r_s in
2-D, making it comparatively more coupled than in 3-D; the stronger coupling in
2-D requires bridge corrections to the hyper- netted-chain method which is
adequate in 3-D; (c) the Helmholtz free energy of spin-polarized and
unpolarized phases have been calculated. The existence of a spin-polarized 2-D
liquid near r_s = 30, is found to be a marginal possibility. These results
pertain to clean uniform 2-D electron systems.Comment: This paper replaces the cond-mat/0109228 submision; the new version
include s more accurate numerical evaluation of the Helmholtz energies of the
para- and ferromagentic 2D fluides at finite temperatures. (Paper accepted
for publication in Phys. Rev. Lett.
The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event
Proxima Centauri, our closest stellar neighbour, is a low-mass M5 dwarf
orbiting in a triple system. An Earth-mass planet with an 11 day period has
been discovered around this star. The star's mass has been estimated only
indirectly using a mass-luminosity relation, meaning that large uncertainties
affect our knowledge of its properties. To refine the mass estimate, an
independent method has been proposed: gravitational microlensing. By taking
advantage of the close passage of Proxima Cen in front of two background stars,
it is possible to measure the astrometric shift caused by the microlensing
effect due to these close encounters and estimate the gravitational mass of the
lens (Proxima Cen). Microlensing events occurred in 2014 and 2016 with impact
parameters, the closest approach of Proxima Cen to the background star, of
1\farcs6 0\farcs1 and 0\farcs5 0\farcs1, respectively. Accurate
measurements of the positions of the background stars during the last two years
have been obtained with HST/WFC3, and with VLT/SPHERE from the ground. The
SPHERE campaign started on March 2015, and continued for more than two years,
covering 9 epochs. The parameters of Proxima Centauri's motion on the sky,
along with the pixel scale, true North, and centering of the instrument
detector were readjusted for each epoch using the background stars visible in
the IRDIS field of view. The experiment has been successful and the astrometric
shift caused by the microlensing effect has been measured for the second event
in 2016. We used this measurement to derive a mass of
0.150 (an error of 40\%) \MSun for Proxima
Centauri acting as a lens. This is the first and the only currently possible
measurement of the gravitational mass of Proxima Centauri.Comment: 10 pages, 6 figures, accepted by MNRA
Assessment of the diffusion coefficient of nanocarriers with the fluorescence recovery technique in gastrointestinal mucus
First direct observation of two protons in the decay of Fe with a TPC
The decay of the ground-state two-proton emitter 45Fe was studied with a
time-projection chamber and the emission of two protons was unambiguously
identified. The total decay energy and the half-life measured in this work
agree with the results from previous experiments. The present result
constitutes the first direct observation of the individual protons in the
two-proton decay of a long-lived ground-state emitter. In parallel, we
identified for the first time directly two-proton emission from 43Cr, a known
beta-delayed two-proton emitter. The technique developped in the present work
opens the way to a detailed study of the mechanism of ground-state as well as
beta-delayed two-proton radioactivity.Comment: 4 pages, 5 figure
The Path Integral Monte Carlo Calculation of Electronic Forces
We describe a method to evaluate electronic forces by Path Integral Monte
Carlo (PIMC). Electronic correlations, as well as thermal effects, are included
naturally in this method. For fermions, a restricted approach is used to avoid
the ``sign'' problem. The PIMC force estimator is local and has a finite
variance. We applied this method to determine the bond length of H and the
chemical reaction barrier of H+HH+H. At low
temperature, good agreement is obtained with ground state calculations. We
studied the proton-proton interaction in an electron gas as a simple model for
hydrogen impurities in metals. We calculated the force between the two protons
at two electronic densities corresponding to Na () and Al
() using a supercell with 38 electrons. The result is compared to
previous calculations. We also studied the effect of temperature on the
proton-proton interaction. At very high temperature, our result agrees with the
Debye screening of electrons. As temperature decreases, the Debye theory fails
both because of the strong degeneracy of electrons and most importantly, the
formation of electronic bound states around the protons.Comment: 18 pages, 10 figure
Explanation of the Gibbs paradox within the framework of quantum thermodynamics
The issue of the Gibbs paradox is that when considering mixing of two gases
within classical thermodynamics, the entropy of mixing appears to be a
discontinuous function of the difference between the gases: it is finite for
whatever small difference, but vanishes for identical gases. The resolution
offered in the literature, with help of quantum mixing entropy, was later shown
to be unsatisfactory precisely where it sought to resolve the paradox.
Macroscopic thermodynamics, classical or quantum, is unsuitable for explaining
the paradox, since it does not deal explicitly with the difference between the
gases. The proper approach employs quantum thermodynamics, which deals with
finite quantum systems coupled to a large bath and a macroscopic work source.
Within quantum thermodynamics, entropy generally looses its dominant place and
the target of the paradox is naturally shifted to the decrease of the maximally
available work before and after mixing (mixing ergotropy). In contrast to
entropy this is an unambiguous quantity. For almost identical gases the mixing
ergotropy continuously goes to zero, thus resolving the paradox. In this
approach the concept of ``difference between the gases'' gets a clear
operational meaning related to the possibilities of controlling the involved
quantum states. Difficulties which prevent resolutions of the paradox in its
entropic formulation do not arise here. The mixing ergotropy has several
counter-intuitive features. It can increase when less precise operations are
allowed. In the quantum situation (in contrast to the classical one) the mixing
ergotropy can also increase when decreasing the degree of mixing between the
gases, or when decreasing their distinguishability. These points go against a
direct association of physical irreversibility with lack of information.Comment: Published version. New title. 17 pages Revte
Minimal work principle: proof and counterexamples
The minimal work principle states that work done on a thermally isolated
equilibrium system is minimal for adiabatically slow (reversible) realization
of a given process. This principle, one of the formulations of the second law,
is studied here for finite (possibly large) quantum systems interacting with
macroscopic sources of work. It is shown to be valid as long as the adiabatic
energy levels do not cross. If level crossing does occur, counter examples are
discussed, showing that the minimal work principle can be violated and that
optimal processes are neither adiabatically slow nor reversible. The results
are corroborated by an exactly solvable model.Comment: 13 pages, revtex, 2 eps figure
- …
