135 research outputs found

    MOWServ: a web client for integration of bioinformatic resources

    Get PDF
    The productivity of any scientist is affected by cumbersome, tedious and time-consuming tasks that try to make the heterogeneous web services compatible so that they can be useful in their research. MOWServ, the bioinformatic platform offered by the Spanish National Institute of Bioinformatics, was released to provide integrated access to databases and analytical tools. Since its release, the number of available services has grown dramatically, and it has become one of the main contributors of registered services in the EMBRACE Biocatalogue. The ontology that enables most of the web-service compatibility has been curated, improved and extended. The service discovery has been greatly enhanced by Magallanes software and biodataSF. User data are securely stored on the main server by an authentication protocol that enables the monitoring of current or already-finished user’s tasks, as well as the pipelining of successive data processing services. The BioMoby standard has been greatly extended with the new features included in the MOWServ, such as management of additional information (metadata such as extended descriptions, keywords and datafile examples), a qualified registry, error handling, asynchronous services and service replication. All of them have increased the MOWServ service quality, usability and robustness. MOWServ is available at http://www.inab.org/MOWServ/ and has a mirror at http://www.bitlab-es.com/MOWServ/

    Quality of Life in Men With Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency

    Get PDF
    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) is a disorder of adrenal steroid biosynthesis, leading to hypocortisolism, hypoaldosteronism, and hyperandrogenism. Impaired quality of life (QoL) has been demonstrated in women with CAH, but data on men with CAH are scarce. We hypothesized that disease severity and poor treatment control are inversely associated with QoL. In this study, 109 men (16-68 years) with 21OHD were included. The WHOQOL-BREF questionnaire was used to measure self-reported QoL domain scores on a 0-100 scale, where higher scores reflect better QoL. QoL domain scores were compared to published data on healthy and chronically ill reference populations from France, Germany, the Netherlands, and the United Kingdom. Differences in QoL scores among groups of disease severity and treatment control were tested within the study population. Overall, the men with CAH in this study appeared to rate their QoL as good. Median domain scores were 78.6 (IQR: 67.9-85.7) for physical health, 79.2 (IQR: 66.7-87.5) for psychological health, 75.0 (IQR: 58.3-83.3) for social relationships, and 81.3 (IQR: 71.9-90.6) for environment. In general, these scores were similar to WHOQOL-BREF domain scores in healthy references and higher compared to chronically ill reference populations. The domain scores did not differ among genotype groups, but patients with undertreatment or increased 17-hydroxyprogestrone concentrations scored higher on several QoL domains (p<0.05). Patients treated with dexamethasone or prednisone scored higher on the physical health, psychological health, and social relationships domains, but not on the environmental domain. In conclusion, QoL domain scores appeared to be comparable to healthy reference populations and higher compared to patients with a chronic illness. QoL was not influenced by genotype, but undertreatment and use of dexamethasone or prednisone were associated with higher QoL

    Modified-release hydrocortisone in congenital adrenal hyperplasia

    Get PDF
    Context Standard glucocorticoid therapy in congenital adrenal hyperplasia (CAH) regularly fails to control androgen excess, causing glucocorticoid overexposure and poor health outcomes. Objective We investigated whether modified-release hydrocortisone (MR-HC), which mimics physiologic cortisol secretion, could improve disease control. Methods A 6-month, randomized, phase 3 study was conducted of MR-HC vs standard glucocorticoid, followed by a single-arm MR-HC extension study. Primary outcomes were change in 24-hour SD score (SDS) of androgen precursor 17-hydroxyprogesterone (17OHP) for phase 3, and efficacy, safety and tolerability of MR-HC for the extension study. Results The phase 3 study recruited 122 adult CAH patients. Although the study failed its primary outcome at 6 months, there was evidence of better biochemical control on MR-HC, with lower 17OHP SDS at 4 (P = .007) and 12 (P = .019) weeks, and between 07:00h to 15:00h (P = .044) at 6 months. The percentage of patients with controlled 09:00h serum 17OHP (< 1200 ng/dL) was 52% at baseline, at 6 months 91% for MR-HC and 71% for standard therapy (P = .002), and 80% for MR-HC at 18 months’ extension. The median daily hydrocortisone dose was 25 mg at baseline, at 6 months 31 mg for standard therapy, and 30 mg for MR-HC, and after 18 months 20 mg MR-HC. Three adrenal crises occurred in phase 3, none on MR-HC and 4 in the extension study. MR-HC resulted in patient-reported benefit including menses restoration in 8 patients (1 on standard therapy), and 3 patient and 4 partner pregnancies (none on standard therapy). Conclusion MR-HC improved biochemical disease control in adults with reduction in steroid dose over time and patient-reported benefit

    Characterization of Rhodamine-123 as a Tracer Dye for Use In In vitro Drug Transport Assays

    Get PDF
    Fluorescent tracer dyes represent an important class of sub-cellular probes and allow the examination of cellular processes in real-time with minimal impact upon these processes. Such tracer dyes are becoming increasingly used for the examination of membrane transport processes, as they are easy-to-use, cost effective probe substrates for a number of membrane protein transporters. Rhodamine 123, a member of the rhodamine family of flurone dyes, has been used to examine membrane transport by the ABCB1 gene product, MDR1. MDR1 is viewed as the archetypal drug transport protein, and is able to efflux a large number of clinically relevant drugs. In addition, ectopic activity of MDR1 has been associated with the development of multiple drug resistance phenotype, which results in a poor patient response to therapeutic intervention. It is thus important to be able to examine the potential for novel compounds to be MDR1 substrates. Given the increasing use rhodamine 123 as a tracer dye for MDR1, a full characterisation of its spectral properties in a range of in vitro assay-relevant media is warranted. Herein, we determine λmax for excitation and emission or rhodamine 123 and its metabolite rhodamine 110 in commonly used solvents and extraction buffers, demonstrating that fluorescence is highly dependent on the chemical environment: Optimal parameters are 1% (v/v) methanol in HBSS, with λex = 505 nm, λem = 525 nm. We characterise the uptake of rhodamine 123 into cells, via both passive and active processes, and demonstrate that this occurs primarily through OATP1A2-mediated facilitated transport at concentrations below 2 µM, and via micelle-mediated passive diffusion above this. Finally, we quantify the intracellular sequestration and metabolism of rhodamine 123, demonstrating that these are both cell line-dependent factors that may influence the interpretation of transport assays

    BranchClust: a phylogenetic algorithm for selecting gene families

    Get PDF
    BACKGROUND: Automated methods for assembling families of orthologous genes include those based on sequence similarity scores and those based on phylogenetic approaches. The first are easy to automate but usually they do not distinguish between paralogs and orthologs or have restriction on the number of taxa. Phylogenetic methods often are based on reconciliation of a gene tree with a known rooted species tree; a limitation of this approach, especially in case of prokaryotes, is that the species tree is often unknown, and that from the analyses of single gene families the branching order between related organisms frequently is unresolved. RESULTS: Here we describe an algorithm for the automated selection of orthologous genes that recognizes orthologous genes from different species in a phylogenetic tree for any number of taxa. The algorithm is capable of distinguishing complete (containing all taxa) and incomplete (not containing all taxa) families and recognizes in- and outparalogs. The BranchClust algorithm is implemented in Perl with the use of the BioPerl module for parsing trees and is freely available at . CONCLUSION: BranchClust outperforms the Reciprocal Best Blast hit method in selecting more sets of putatively orthologous genes. In the test cases examined, the correctness of the selected families and of the identified in- and outparalogs was confirmed by inspection of the pertinent phylogenetic trees

    Cardiac Alpha-Myosin (MYH6) Is the Predominant Sarcomeric Disease Gene for Familial Atrial Septal Defects

    Get PDF
    Secundum-type atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD) and are associated with a familial risk. Mutations in transcription factors represent a genetic source for ASDII. Yet, little is known about the role of mutations in sarcomeric genes in ASDII etiology. To assess the role of sarcomeric genes in patients with inherited ASDII, we analyzed 13 sarcomeric genes (MYH7, MYBPC3, TNNT2, TCAP, TNNI3, MYH6, TPM1, MYL2, CSRP3, ACTC1, MYL3, TNNC1, and TTN kinase region) in 31 patients with familial ASDII using array-based resequencing. Genotyping of family relatives and control subjects as well as structural and homology analyses were used to evaluate the pathogenic impact of novel non-synonymous gene variants. Three novel missense mutations were found in the MYH6 gene encoding alpha-myosin heavy chain (R17H, C539R, and K543R). These mutations co-segregated with CHD in the families and were absent in 370 control alleles. Interestingly, all three MYH6 mutations are located in a highly conserved region of the alpha-myosin motor domain, which is involved in myosin-actin interaction. In addition, the cardiomyopathy related MYH6-A1004S and the MYBPC3-A833T mutations were also found in one and two unrelated subjects with ASDII, respectively. No mutations were found in the 11 other sarcomeric genes analyzed. The study indicates that sarcomeric gene mutations may represent a so far underestimated genetic source for familial recurrence of ASDII. In particular, perturbations in the MYH6 head domain seem to play a major role in the genetic origin of familial ASDII

    A Benchmark of Parametric Methods for Horizontal Transfers Detection

    Get PDF
    Horizontal gene transfer (HGT) has appeared to be of importance for prokaryotic species evolution. As a consequence numerous parametric methods, using only the information embedded in the genomes, have been designed to detect HGTs. Numerous reports of incongruencies in results of the different methods applied to the same genomes were published. The use of artificial genomes in which all HGT parameters are controlled allows testing different methods in the same conditions. The results of this benchmark concerning 16 representative parametric methods showed a great variety of efficiencies. Some methods work very poorly whatever the type of HGTs and some depend on the conditions or on the metrics used. The best methods in terms of total errors were those using tetranucleotides as criterion for the window methods or those using codon usage for gene based methods and the Kullback-Leibler divergence metric. Window methods are very sensitive but less specific and detect badly lone isolated gene. On the other hand gene based methods are often very specific but lack of sensitivity. We propose using two methods in combination to get the best of each category, a gene based one for specificity and a window based one for sensitivity

    Differential Trends in the Codon Usage Patterns in HIV-1 Genes

    Get PDF
    Host-pathogen interactions underlie one of the most complex evolutionary phenomena resulting in continual adaptive genetic changes, where pathogens exploit the host's molecular resources for growth and survival, while hosts try to eliminate the pathogen. Deciphering the molecular basis of host–pathogen interactions is useful in understanding the factors governing pathogen evolution and disease propagation. In host-pathogen context, a balance between mutation, selection, and genetic drift is known to maintain codon bias in both organisms. Studies revealing determinants of the bias and its dynamics are central to the understanding of host-pathogen evolution. We considered the Human Immunodeficiency Virus (HIV) type 1 and its human host to search for evolutionary signatures in the viral genome. Positive selection is known to dominate intra-host evolution of HIV-1, whereas high genetic variability underlies the belief that neutral processes drive inter-host differences. In this study, we analyze the codon usage patterns of HIV-1 genomes across all subtypes and clades sequenced over a period of 23 years. We show presence of unique temporal correlations in the codon bias of three HIV-1 genes illustrating differential adaptation of the HIV-1 genes towards the host preferred codons. Our results point towards gene-specific translational selection to be an important force driving the evolution of HIV-1 at the population level
    corecore