8 research outputs found

    Risk Factors for Colorectal Cancer in Patients with Multiple Serrated Polyps: A Cross-Sectional Case Series from Genetics Clinics

    Get PDF
    Patients with multiple serrated polyps are at an increased risk for developing colorectal cancer (CRC). Recent reports have linked cigarette smoking with the subset of CRC that develops from serrated polyps. The aim of this work therefore was to investigate the association between smoking and the risk of CRC in high-risk genetics clinic patients presenting with multiple serrated polyps. Methods and Findings We identified 151 Caucasian individuals with multiple serrated polyps including at least 5 outside the rectum, and classified patients into non-smokers, current or former smokers at the time of initial diagnosis of polyposis. Cases were individuals with multiple serrated polyps who presented with CRC. Controls were individuals with multiple serrated polyps and no CRC. Multivariate logistic regression was performed to estimate associations between smoking and CRC with adjustment for age at first presentation, sex and co-existing traditional adenomas, a feature that has been consistently linked with CRC risk in patients with multiple serrated polyps. CRC was present in 56 (37%) individuals at presentation. Patients with at least one adenoma were 4 times more likely to present with CRC compared with patients without adenomas (OR = 4.09; 95%CI 1.27 to 13.14; P = 0.02). For females, the odds of CRC decreased by 90% in current smokers as compared to never smokers (OR = 0.10; 95%CI 0.02 to 0.47; P = 0.004) after adjusting for age and adenomas. For males, there was no relationship between current smoking and CRC. There was no statistical evidence of an association between former smoking and CRC for both sexes. Conclusion A decreased odds for CRC was identified in females with multiple serrated polyps who currently smoke, independent of age and the presence of a traditional adenoma. Investigations into the biological basis for these observations could lead to non-smoking-related therapies being developed to decrease the risk of CRC and colectomy in these patients.Daniel D. Buchanan, Kevin Sweet, Musa Drini, Mark A. Jenkins, Aung Ko Win, Dallas R. English, Michael D. Walsh, Mark Clendenning, Diane M. McKeone, Rhiannon J. Walters, Aedan Roberts, Sally-Ann Pearson, Erika Pavluk, John L. Hopper, Michael R. Gattas, Jack Goldblatt, Jill George, Graeme K. Suthers, Kerry D. Phillips, Sonja Woodal, Julie Arnold, Kathy Tucker, Amanda Muir, Michael Field, Sian Greening, Steven Gallinger, Renee Perrier, John A. Baron, John D. Potter, Robert Haile, Wendy Franke, Albert de la Chapelle, Finlay Macrae, Christophe Rosty, Neal I. Walker, Susan Parry and Joanne P. Youn

    A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay

    Get PDF
    Purpose Contiguous gene deletions are known to cause several neurodevelopmental syndromes, many of which are caused by recurrent events on chromosome 16. However, chromosomal microarray studies (CMA) still yield copy-number variants (CNVs) of unknown clinical significance. We sought to characterize eight individuals with overlapping 205-kb to 504-kb 16p13.3 microdeletions that are distinct from previously published deletion syndromes. Methods Clinical information on the patients and bioinformatic scores for the deleted genes were analyzed. Results All individuals in our cohort displayed developmental delay, intellectual disability, and various forms of seizures. Six individuals were microcephalic and two had strabismus. The deletion was absent in all 13 parents who were available for testing. The area of overlap encompasses seven genes including TBC1D24, ATP6V0C, and PDPK1 (also known as PDK1). Bi-allelic TBC1D24 pathogenic variants are known to cause nonsyndromic deafness, epileptic disorders, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, seizures). Sanger sequencing of the nondeleted TBC1D24 allele did not yield any additional pathogenic variants. Conclusions We propose that 16p13.3 microdeletions resulting in simultaneous haploinsufficiencies of TBC1D24, ATP6V0C, and PDPK1 cause a novel rare contiguous gene deletion syndrome of microcephaly, developmental delay, intellectual disability, and epilepsy

    EHMT1 pathogenic variants and 9q34.3 microdeletions share altered DNA methylation patterns in patients with Kleefstra syndrome

    No full text
    Aim: Kleefstra syndrome (KS) is a rare neurodevelopmental disorder caused by haploinsufficiency of the euchromatic histone lysine methyltransferase 1 gene, EHMT1, due to either a submicroscopic 9q34.3 deletion or a pathogenic EHMT1 variant. KS is characterized by intellectual disability, autistic-like features, heart defects, hypotonia and distinctive facial features. Here, we aimed to (1) identify a unique DNA methylation signature in patients with KS, and (2) demonstrate the efficacy of DNA methylation in predicting the pathogenicity of copy number and sequence variants.Methods: We assayed genome-wide DNA methylation at > 850,000 CpG sites in the blood of KS patients (n = 10) carrying pathogenic variants in EHMT1 or 9q34.3 deletions, as compared to neurotypical controls (n = 42). Differentially methylated sites were validated using additional KS patients (n = 10) and controls (n = 29) to assess specificity and sensitivity of these patterns.Results: The DNA methylation signature of KS demonstrated high sensitivity and specificity; controls and KS patients with a confirmed molecular diagnosis were classified correctly. In additional individuals with EHMT1 alterations, including frameshift or missense variants and partial gene duplications, DNA methylation classifications were consistent with clinical presentation. Furthermore, genes containing differentially methylated CpG sites were enriched for functions related to KS features, including heart formation and synaptic activity.Conclusion: The KS DNA methylation signature did not differ in patients with deletions and variants, supporting haploinsufficiency of EHMT1 as the likely causative mechanism. Beyond this finding, it provides new insights into epigenetic dysregulation associated with KS and can be used to classify individuals with uncertain genomic findings or ambiguous clinical presentations

    Performance of the eHealth decision support tool, MIPOGG, for recognising children with Li-Fraumeni, DICER1, Constitutional mismatch repair deficiency and Gorlin syndromes.

    No full text
    BACKGROUND Cancer predisposition syndromes (CPSs) are responsible for at least 10% of cancer diagnoses in children and adolescents, most of which are not clinically recognised prior to cancer diagnosis. A variety of clinical screening guidelines are used in healthcare settings to help clinicians detect patients who have a higher likelihood of having a CPS. The McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) is an electronic health decision support tool that uses algorithms to help clinicians determine if a child/adolescent diagnosed with cancer should be referred to genetics for a CPS evaluation. METHODS This study assessed MIPOGG's performance in identifying Li-Fraumeni, DICER1, Constitutional mismatch repair deficiency and Gorlin (nevoid basal cell carcinoma) syndromes in a retrospective series of 84 children diagnosed with cancer and one of these four CPSs in Canadian hospitals over an 18-year period. RESULTS MIPOGG detected 82 of 83 (98.8%) evaluable patients with any one of these four genetic conditions and demonstrated an appropriate rationale for suggesting CPS evaluation. When compared with syndrome-specific clinical screening criteria, MIPOGG's ability to correctly identify children with any of the four CPSs was equivalent to, or outperformed, existing clinical criteria respective to each CPS. CONCLUSION This study adds evidence that MIPOGG is an appropriate tool for CPS screening in clinical practice. MIPOGG's strength is that it starts with a specific cancer diagnosis and incorporates criteria relevant for associated CPSs, making MIPOGG a more universally accessible diagnostic adjunct that does not require in-depth knowledge of each CPS

    Cancer Risks for Relatives of Patients With Serrated Polyposis

    Get PDF
    OBJECTIVES: Serrated polyposis (hyperplastic polyposis) is characterized by multiple polyps with serrated architecture in the colorectum. Although patients with serrated polyposis are known to be at increased risk of colorectal cancer (CRC) and possibly extracolonic cancers, cancer risk for their relatives has not been widely explored. The aim of this study was to estimate the risks of CRC and extracolonic cancers for relatives of patients with serrated polyposis. METHODS:A cohort of the 1,639 first- and second-degree relatives of 100 index patients with serrated polyposis recruited regardless of a family history of polyps or cancer from genetic clinics in Australia, New Zealand, Canada, and the USA, were retrospectively analyzed to estimate the country-, age-, and sex-specific standardized incidence ratios (SIRs) for relatives compared with the general population. RESULTS: A total of 102 CRCs were observed in first- and second-relatives (SIR 2.25, 95% confidence interval (CI) 1.75–2.93; P<0.001), with 54 in first-degree relatives (SIR 5.16, 95% CI 3.70–7.30; P<0.001) and 48 in second-degree relatives (SIR 1.38, 95% CI 1.01–1.91; P=0.04). Six pancreatic cancers were observed in first-degree relatives (SIR 3.64, 95% CI 1.70–9.21; P=0.003). There was no statistical evidence of increased risk for cancer of the stomach, brain, breast, or prostate. CONCLUSIONS: Our finding that relatives of serrated polyposis patients are at significantly increased risk of colorectal and pancreatic cancer adds to the accumulating evidence that serrated polyposis has an inherited component.Aung Ko Win... Graeme K Suthers... et al
    corecore