241 research outputs found

    Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation

    Get PDF
    BRCA1 plays an important role in mechanisms of response to double-strand breaks, participating in genome surveillance, DNA repair, and cell cycle checkpoint arrests. Here, we identify a constitutive BRCA1-c-Abl complex and provide evidence for a direct interaction between the PXXP motif in the C terminus of BRCA1 and the SH3 domain of c-Abl. Following exposure to ionizing radiation (IR), the BRCA1-c-Abl complex is disrupted in an ATM-dependent manner, which correlates temporally with ATM-dependent phosphorylation of BRCA1 and ATM-dependent enhancement of the tyrosine kinase activity of c-Abl. The BRCA1-c-Abl interaction is affected by radiation-induced modification to both BRCA1 and c-Abl. We show that the C terminus of BRCA1 is phosphorylated by c-Abl in vitro. In vivo, BRCA1 is phosphorylated at tyrosine residues in an ATM-dependent, radiation-dependent manner. Tyrosine phosphorylation of BRCA1, however, is not required for the disruption of the BRCA1-c-Abl complex. BRCA1-mutated cells exhibit constitutively high c-Abl kinase activity that is not further increased on exposure to IR. We suggest a model in which BRCA1 acts in concert with ATM to regulate c-Abl tyrosine kinase activity

    Reduction of brain metastases in plasminogen activator inhibitor-1-deficient mice with transgenic ocular tumors

    Get PDF
    Plasminogen activator inhibitor-1 is known to play a paradoxical positive role in tumor angiogenesis, but its contribution to metastatic spread remains unclear. We studied the impact of plasminogen activator inhibitor (PAI)-1 deficiency in a transgenic mouse model of ocular tumors originating from retinal epithelial cells and leading to brain metastasis (TRP-1/SV40 Tag mice). PAI-1 deficiency did not affect primary tumor growth or vascularization, but was associated with a smaller number of brain metastases. Brain metastases were found to be differentially distributed between the two genotypes. PAI-1-deficient mice displayed mostly secondary foci expanding from local optic nerve infiltration, whereas wild-type animals displayed more disseminated nodules in the scissura and meningeal spaces. SuperArray GEarray analyses aimed at detecting molecules potentially compensating for PAI-1 deficiency demonstrated an increase in fibroblast growth factor-1 (FGF-1) gene expression in primary tumors, which was confirmed by reverse transcription-polymerase chain reaction and western blotting. Our data provide the first evidence of a key role for PAI-1 in a spontaneous model of metastasis and suggest that angiogenic factors, such as FGF-1, may be important for primary tumor growth and may compensate for the absence of PAI-1. They identify PAI-1 and FGF-1 as important targets for combined antitumor strategie

    Intra-amniotic delivery of CFTR-expressing adenovirus does not reverse cystic fibrosis phenotype in inbred CFTR-knockout mice

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © 2008 The American Society of Gene Therapy.Due to its early onset and severe prognosis, cystic fibrosis (CF) has been suggested as a candidate disease for in utero gene therapy. In 1997, a study was published claiming that to how transient prenatal expression of CF transmembrane conductance regulator (CFTR) from an in utero –injected adenovirus vector could achieve permanent reversal of the CF intestinal pathology in adult CF knockout mice, despite the loss of CFTR transgene expression by birth. This would imply that the underlying cause of CF is a prenatal defect for which lifelong cure can be achieved by transient prenatal expression of CFTR. Despite criticism at the time of publication, no independent verification of this contentious finding has been published so far. This is vital for the development of future therapeutic strategies as it may determine whether CF gene therapy should be performed prenatally or postnatally. We therefore reinvestigated this finding with an identical adenoviral vector and a knockout CF mouse line (CftrtmlCam) with a completely inbred genetic background to eliminate any effects due to genetic variation. After delivery of the CFTR-expressing adenovirus to the fetal mouse, both vector DNA and transgenic CFTR expression were detected in treated animals postpartum but statistically no significant difference in survival was observed between the Cftr–/– mice treated with the CFTR-adenovirus and those treated with the control vector.Sport Aiding Medical Research for Kids, the Cystic Fibrosis Trust, and the Katharine Dormandy Trust

    Adenovirus-mediated correction of the genetic defect in hepatocytes from patients with familial hypercholesterolemia

    Full text link
    Familial hypercholesterolemia (FH) is an inherited deficiency of LDL receptors that has been an important model for liver-directed gene therapy. We are developing approaches for treating FH that are based on direct delivery of recombinant LDL receptor genes to liver in vivo. As a first step towards this goal, replication-defective recombinant adenoviruses were constructed which contained either the lacZ gene or the human LDL receptor cDNA expressed from a β-actin promoter. Primary cultures of hepatocytes were established from two patients with homozygous FH and one nonFH patient, and subsequently exposed to recombinant adenoviruses at MOIs ranging from 0.1 to 5. Essentially all of the cells expressed high levels of the transgene without demonstrable expression of an early or late adenoviral gene product; the level of recombinant-derived LDL receptor protein in transduced FH hepatocytes exceeded the endogenous levels by at least 20-fold. These studies support the utility of recombinant adenoviruses for efficient transduction of recombinant LDL receptor genes into human FH hepatocytes without expression of viral proteins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45545/1/11188_2005_Article_BF01233250.pd

    Gene therapy for carcinoma of the breast: Pro-apoptotic gene therapy

    Get PDF
    The dysregulation of apoptosis contributes in a variety of ways to the malignant phenotype. It is increasingly recognized that the alteration of pro-apoptotic and anti-apoptotic molecules determines not only escape from mechanisms that control cell cycle and DNA damage, but also endows the cancer cells with the capacity to survive in the presence of a metabolically adverse milieu, to resist the attack of the immune system, to locally invade and survive despite a lack of tissue anchorage, and to evade the otherwise lethal insults induced by drugs and radiotherapy. A multitude of apoptosis mediators has been identified in the past decade, and the roles of several of them in breast cancer have been delineated by studying the clinical correlates of pathologically documented abnormalities. Using this information, attempts are being made to correct the fundamental anomalies at the genetic level. Fundamental to this end are the design of more efficient and selective gene transfer systems, and the employment of complex interventions that are tailored to breast cancer and that are aimed concomitantly towards different components of the redundant regulatory pathways. The combination of such genetic modifications is most likely to be effective when combined with conventional treatments, thus robustly activating several pro-apoptotic pathways
    • …
    corecore