183 research outputs found

    Impact of the solar activity on the propagation of ICMEs: Simulations of hydro, magnetic and median ICMEs at minimum and maximum of activity

    Full text link
    The propagation of Interplanetary Coronal Mass Ejections (ICMEs) in the heliosphere is influenced by many physical phenomena, related to the internal structure of the ICME and its interaction with the ambient solar wind and magnetic field. As the solar magnetic field is modulated by the 11-year dynamo cycle, our goal is to perform a theoretical exploratory study to assess the difference of propagation of an ICME in typical minimum and maximum activity backgrounds. We define a median representative CME at 0.1~au, using both observations and numerical simulations, and describe it using a spheromak model. We use the heliospheric propagator European Heliospheric FORecasting Information Asset (EUHFORIA) to inject the same ICME in two different background wind environments. We then study how the environment and the internal CME structure impact the propagation of the ICME towards Earth, by comparison with an unmagnetized CME. At minimum of activity, the structure of the heliosphere around the ecliptic causes the ICME to slow down, creating a delay with the polar parts of the ejecta. This delay is more important if the ICME is faster. At maximum of activity, a southern coronal hole causes a northward deflection. For these cases, we always find that the ICME at maximum of activity arrives first, while the ICME at minimum of activity is actually more geo-effective. The helicity sign of the ICME is also a crucial parameter but at minimum of activity only, since it affects the magnetic profile and the arrival time of up to 8 hours.Comment: 25 pages, 16 figures, accepted in Ap

    LOX Gene Transcript Accumulation in Olive (Olea europaea L.) Fruits at Different Stages of Maturation: Relationship between Volatile Compounds, Environmental Factors, and Technological Treatments for Oil Extraction

    Get PDF
    The quality of olive oil is influenced by genetic and environmental factors and by the maturation state of drupes, but it is equally affected by technological treatments of the process. This work investigates the possible correlation between olive LOX gene transcript accumulation, evaluated in fruits collected at different stages of maturation, and chemical biomarkers of its activity. During olive fruit ripening, the same genotype harvested from two different farms shows a positive linear trend between LOX relative transcript accumulation and the content of volatile compounds present in the olive oil aroma. Interestingly, a negative linear trend was observed between LOX relative transcript accumulation and the content of volatile compounds present in the olive pastes obtained from olive fruits with and without malaxation. The changes in the olive LOX transcript accumulation reveal its environmental regulation and suggest differential physiological functions for the LOXs

    Validation of a wave heated 3D MHD coronal-wind model using Polarized Brightness and EUV observations

    Full text link
    The physical properties responsible for the formation and evolution of the corona and heliosphere are still not completely understood. 3D MHD global modeling is a powerful tool to investigate all the possible candidate processes. To fully understand the role of each of them, we need a validation process where the output from the simulations is quantitatively compared to the observational data. In this work, we present the results from our validation process applied to the wave turbulence driven 3D MHD corona-wind model WindPredict-AW. At this stage of the model development, we focus the work to the coronal regime in quiescent condition. We analyze three simulations results, which differ by the boundary values. We use the 3D distributions of density and temperature, output from the simulations at the time of around the First Parker Solar Probe perihelion (during minimum of the solar activity), to synthesize both extreme ultraviolet (EUV) and white light polarized (WL pB) images to reproduce the observed solar corona. For these tests, we selected AIA 193 A, 211 A and 171 A EUV emissions, MLSO K-Cor and LASCO C2 pB images obtained the 6 and 7 November 2018. We then make quantitative comparisons of the disk and off limb corona. We show that our model is able to produce synthetic images comparable to those of the observed corona.Comment: in pres

    Powering stellar magnetism: energy transfers in cyclic dynamos of sun-like stars

    Get PDF
    We use the anelastic spherical harmonic code to model the convective dynamo of solar-type stars. Based on a series of 15 3D MHD simulations spanning four bins in rotation and mass, we show what mechanisms are at work in these stellar dynamos with and without magnetic cycles and how global stellar parameters affect the outcome. We also derive scaling laws for the differential rotation and magnetic field based on these simulations. We find a weaker trend between differential rotation and stellar rotation rate, (ΔΩ∞(IΩI/Ω⊛) 0.46) in the MHD solutions than in their HD counterpart ((IΩI/Ω⊛) 0.66), yielding a better agreement with the observational trends based on power laws. We find that for a fluid Rossby number between 0.15 ≲ Rof ≲ 0.65, the solutions possess long magnetic cycle, if Rof ≲ 0.42 a short cycle and if Rof ≲ 1 (antisolar-like differential rotation), a statistically steady state. We show that short-cycle dynamos follow the classical Parker–Yoshimura rule whereas the long-cycle period ones do not. We also find efficient energy transfer between reservoirs, leading to the conversion of several percent of the starʼs luminosity into magnetic energy that could provide enough free energy to sustain intense eruptive behavior at the star’s surface. We further demonstrate that the Rossby number dependency of the large-scale surface magnetic field in the simulation ( BL,surf ~ Rof -1.26) agrees better with observations ( Bv~ Ros -1.4 ± 0.1) and differs from dynamo scaling based on the global magnetic energy (Bbulk ~Rof -0.5)

    Proximity to Delivery Alters Insulin Sensitivity and Glucose Metabolism in Pregnant Mice.

    Get PDF
    In late pregnancy, maternal insulin resistance occurs to support fetal growth, but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy at day 16 (D16) and near term at D19. Nonpregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by DEXA, tissue insulin signaling protein abundance by Western blotting, glucose tolerance and utilization, and insulin sensitivity using acute insulin administration and hyperinsulinemic-euglycemic clamps with [(3)H]glucose infusion. Whole-body insulin resistance occurred in D16 pregnant dams in association with basal hyperinsulinemia, insulin-resistant endogenous glucose production, and downregulation of several proteins in hepatic and skeletal muscle insulin signaling pathways relative to NP and D19 values. Insulin resistance was less pronounced at D19, with restoration of NP insulin concentrations, improved hepatic insulin sensitivity, and increased abundance of hepatic insulin signaling proteins. At D16, insulin resistance at whole-body, tissue, and molecular levels will favor fetal glucose acquisition, while improved D19 hepatic insulin sensitivity will conserve glucose for maternal use in anticipation of lactation. Tissue sensitivity to insulin, therefore, alters differentially with proximity to delivery in pregnant mice, with implications for human and other species.We are grateful to the Medical Research Council for funding the research through a studentship to Barbara Musial and an in vivo skills award (MR/J500458/1 and MRC CORD G0600717).This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db15-153
    corecore