464 research outputs found

    Testing excitation models of rapidly oscillating Ap stars with interferometry

    Full text link
    Rapidly oscillating Ap stars are unique objects in the potential they offer to study the interplay between a number of important physical phenomena, in particular, pulsations, magnetic fields, diffusion, and convection. Nevertheless, the simple understanding of how the observed pulsations are excited in these stars is still in progress. In this work we perform a test to what is possibly the most widely accepted excitation theory for this class of stellar pulsators. The test is based on the study of a subset of members of this class for which stringent data on the fundamental parameters are available thanks to interferometry. For three out of the four stars considered in this study, we find that linear, non-adiabatic models with envelope convection suppressed around the magnetic poles can reproduce well the frequency region where oscillations are observed. For the fourth star in our sample no agreement is found, indicating that a new excitation mechanism must be considered. For the three stars whose observed frequencies can be explained by the excitation models under discussion, we derive the minimum angular extent of the region where convection must be suppressed. Finally, we find that the frequency regions where modes are expected to be excited in these models is very sensitive to the stellar radius. This opens the interesting possibility of determining this quantity and related ones, such as the effective temperature or luminosity, from comparison between model predictions and observations, in other targets for which these parameters are not well determined.Comment: Accepted for publication in the MNRA

    The interferometric baselines and GRAVITY astrometric error budget

    Full text link
    GRAVITY is a new generation beam combination instrument for the VLTI. Its goal is to achieve microarsecond astrometric accuracy between objects separated by a few arcsec. This 10610^6 accuracy on astrometric measurements is the most important challenge of the instrument, and careful error budget have been paramount during the technical design of the instrument. In this poster, we will focus on baselines induced errors, which is part of a larger error budget.Comment: SPIE Meeting 2014 -- Montrea

    The GRAVITY fringe tracker: correlation between optical path residuals and atmospheric parameters

    Full text link
    After the first year of observations with the GRAVITY fringe tracker, we compute correlations between the optical path residuals and atmospheric and astronomical parameters. The median residuals of the optical path residuals are 180 nm on the ATs and 270 nm on the UTs. The residuals are uncorrelated with the target magnitudes for Kmag below 5.5 on ATs (9 on UTs). The correlation with the coherence time is however extremely clear, with a drop-off in fringe tracking performance below 3 ms.Comment: submitted to SPIE Astronomical Telescopes & Instrumentation 201

    ULF wave measurements onboard the Interball auroral probe

    Get PDF

    Modeling the e-APD SAPHIRA/C-RED ONE camera at low flux level: An attempt to count photons in the near-infrared with the MIRC-X interferometric combiner

    Get PDF
    This is the final version. Available on open access from EDP Sciences via the DOI in this recordContext. We implement an electron avalanche photodiode (e-APD) in the MIRC-X instrument, upgrade of the 6-telescope nearinfrared imager MIRC, at the CHARA array. This technology should improve the sensitivity of near-infrared interferometry. Aims. We characterize a near-infrared C-RED ONE camera from First Light Imaging (FLI) using an e-APD from Leonardo (previously SELEX). Methods. We first used the classical Mean-Variance analysis to measure the system gain and the amplification gain. We then developed a physical model of the statistical distribution of the camera output signal. This model is based on multiple convolutions of the Poisson statistic, the intrinsic avalanche gain distribution, and the observed distribution of the background signal. At low flux level, this model constraints independently the incident illumination level, the total gain, and the excess noise factor of the amplification. Results. We measure a total transmission of 48 ± 3% including the cold filter and the Quantum Efficiency. We measure a system gain of 0.49 ADU/e, a readout noise of 10 ADU, and amplification gains as high as 200. These results are consistent between the two methods and therefore validate our modeling approach. The measured excess noise factor based on the modeling is 1.47 ± 0.03, with no obvious dependency with flux level or amplification gain. Conclusions. The presented model allows measuring the characteristics of the e-APD array at low flux level independently of preexisting calibration. With < 0.3 electron equivalent readout noise at kilohertz frame rates, we confirm the revolutionary performances of the camera with respect to the PICNIC or HAWAII technologies. However, the measured excess noise factor is significantly higher than the one claimed in the literature (<1.25), and explains why counting multiple photons remains challenging with this camera.European Union Horizon 2020Labex OSUG@2020CNRS/INS

    Characterization of integrated optics components for the second generation of VLTI instruments

    Full text link
    Two of the three instruments proposed to ESO for the second generation instrumentation of the VLTI would use integrated optics for beam combination. Several design are studied, including co-axial and multi-axial recombination. An extensive quantity of combiners are therefore under test in our laboratories. We will present the various components, and the method used to validate and compare the different combiners. Finally, we will discuss the performances and their implication for both VSI and Gravity VLTI instruments.Comment: SPIE Astronomical Instrumentation 2008 in Marseille, France -- Equation (7) update

    The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI

    Full text link
    Interferometric measurements of optical path length differences of stars over large baselines can deliver extremely accurate astrometric data. The interferometer GRAVITY will simultaneously measure two objects in the field of view of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) and determine their angular separation to a precision of 10 micro arcseconds in only 5 minutes. To perform the astrometric measurement with such a high accuracy, the differential path length through the VLTI and the instrument has to be measured (and tracked since Earth's rotation will permanently change it) by a laser metrology to an even higher level of accuracy (corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path techniques are used for nanometer precision measurements, but with these methods it is difficult to track the full beam size and to follow the light path up to the primary mirror of the telescope. Here, we present the preliminary design of a differential path metrology system, developed within the GRAVITY project. It measures the instrumental differential path over the full pupil size and up to the entrance pupil location. The differential phase is measured by detecting the laser fringe pattern both on the telescopes' secondary mirrors as well as after reflection at the primary mirror. Based on our proposed design we evaluate the phase measurement accuracy based on a full budget of possible statistical and systematic errors. We show that this metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres

    Two satellite study of substorm expansion near geosynchronous orbit

    Get PDF
    During several time intervals in 1979–1980 the satellites GEOS-2 and SCATHA were situated relatively close on the nightside of the Earth at geosynchronous distances. Several substorm events were identified during these periods. The event considered in this paper was recorded on 22 May 1979, when the satellites were separated by less than 30min in local time around 21:00&amp;nbsp;LT. The observed 45 to 60&amp;nbsp;s delay of magnetic signatures observed at the two s/c indicates a westward expansion of ~7.7°/min. At the two s/c, the magnetic signatures are, in particular for the azimuthal magnetic field components, quite different. At GEOS-2, being close to the magnetic equator, the dominant feature is a dipolarization with a weak field-aligned current signature corresponding to a symmetric current which cancels at the equator. On SCATHA, however, being close to the current sheet boundary, the azimuthal magnetic field indicates a strong field-aligned Birkeland current structure. On both s/c the first indication of an approaching substorm was an increase in the high energy ion flux followed by a reduction in the flux intensity of energetic electrons and a further tailward stretching of the magnetic field, starting ~2min before the onset of the magnetic field dipolarization. The tailward stretching, the observed variations of the magnetic field components, and the subsequent dipolarization are interpreted in terms of an azimuthally tilted field-aligned current system passing the s/c on the tailward side from east to west. The westward expansion and dipolarization observed at the two s/c are consistent with the propagation of a Rayleigh-Taylor type instability. The increased radial ion flux corresponds to the &lt;i&gt;&lt;b&gt;E&lt;/b&gt;&lt;/i&gt;x&lt;i&gt;&lt;b&gt;B&lt;/b&gt;&lt;/i&gt;-drift due to the substorm associated electric field.&lt;br&gt;&lt;br&gt; &lt;b&gt;Key words.&lt;/b&gt; Magnetospheric physics (storms and substorms; plasma waves and instabilities; current systems

    The fundamental parameters of the roAp star 10 Aql

    Full text link
    Due to the strong magnetic field and related abnormal surface layers existing in rapidly oscillating Ap stars, systematic errors are likely to be present when determining their effective temperatures, which potentially compromises asteroseismic studies of these pulsators. Using long-baseline interferometry, our goal is to determine accurate angular diameters of a number of roAp targets to provide a temperature calibration for these stars. We obtained interferometric observations of 10 Aql with the visible spectrograph VEGA at the CHARA array. We determined a limb-darkened angular diameter of 0.275+/-0.009 mas and deduced a linear radius of 2.32+/-0.09 R_sun. We estimated the star's bolometric flux and used it, in combination with its parallax and angular diameter, to determine the star's luminosity and effective temperature. For two data sets of bolometric flux we derived an effective temperature of 7800+/-170 K and a luminosity of 18+/-1 L_sun or of 8000+/-210 K and 19+/-2 L_sun. We used these fundamental parameters together with the large frequency separation to constrain the mass and the age of 10 Aql, using the CESAM stellar evolution code. Assuming a solar chemical composition and ignoring all kinds of diffusion and settling of elements, we obtained a mass of 1.92 M_sun and an age of 780 Gy or a mass of 1.95 M_sun and an age of 740 Gy, depending on the considered bolometric flux. For the first time, we managed to determine an accurate angular diameter for a star smaller than 0.3 mas and to derive its fundamental parameters. In particular, by only combining our interferometric data and the bolometric flux, we derived an effective temperature that can be compared to those derived from atmosphere models. Such fundamental parameters can help for testing the mechanism responsible for the excitation of the oscillations observed in the magnetic pulsating stars

    GRAVITY: the Calibration Unit

    Full text link
    We present in this paper the design and characterisation of a new sub-system of the VLTI 2nd generation instrument GRAVITY: the Calibration Unit. The Calibration Unit provides all functions to test and calibrate the beam combiner instrument: it creates two artificial stars on four beams, and dispose of four delay lines with an internal metrology. It also includes artificial stars for the tip-tilt and pupil guiding systems, as well as four metrology pick-up diodes, for tests and calibration of the corresponding sub-systems. The calibration unit also hosts the reference targets to align GRAVITY to the VLTI, and the safety shutters to avoid the metrology light to propagate in the VLTI-lab. We present the results of the characterisation and validtion of these differrent sub-units.Comment: 12 pages, 11 figures. Proceeding of SPIE 9146 "Optical and Infrared Interferometry IV
    • 

    corecore