22 research outputs found

    Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard

    Get PDF
    DNA origami, in which a long scaffold strand is assembled with a many short staple strands into parallel arrays of double helices, has proven a powerful method for custom nanofabrication. However, currently the design and optimization of custom 3D DNA-origami shapes is a barrier to rapid application to new areas. Here we introduce a modular barrel architecture, and demonstrate hierarchical assembly of a 100 megadalton DNA-origami barrel of similar to 90nm diameter and similar to 250nm height, that provides a rhombic-lattice canvas of a thousand pixels each, with pitch of similar to 8nm, on its inner and outer surfaces. Complex patterns rendered on these surfaces were resolved using up to twelve rounds of Exchange-PAINT super-resolution microscopy. We envision these structures as versatile nanoscale pegboards for applications requiring complex 3D arrangements of matter, which will serve to promote rapid uptake of this technology in diverse fields beyond specialist groups working in DNA nanotechnology

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics.

    No full text
    Through the convergence of nano- and microtechnologies (quantum dots and microfluidics), we have created a diagnostic system capable of multiplexed, high-throughput analysis of infectious agents in human serum samples. We demonstrate, as a proof-of-concept, the ability to detect serum biomarkers of the most globally prevalent blood-borne infectious diseases (i.e., hepatitis B, hepatitis C, and HIV) with low sample volume (<100 microL), rapidity (<1 h), and 50 times greater sensitivity than that of currently available FDA-approved methods. We further show precision for detecting multiple biomarkers simultaneously in serum with minimal cross-reactivity. This device could be further developed into a portable handheld point-of-care diagnostic system, which would represent a major advance in detecting, monitoring, treating, and preventing infectious disease spread in the developed and developing worlds
    corecore