2 research outputs found

    Performance of risk scores in predicting mortality at 3, 6, and 12 months in patients diagnosed with community-acquired pneumonia

    Get PDF
    Background: Risk scores (RS) evaluate the likelihood of short-term mortality in patients diagnosed with community-acquired pneumonia (CAP). However, there is a scarcity of evidence to determine the risk of long-term mortality. This article aims to compare the effectiveness of 16 scores in predicting mortality at three, six, and twelve months in adult patients with CAP. Methods: A retrospective cohort study on individuals diagnosed with CAP was conducted across two hospitals in Colombia. Receiver Operating Characteristic (ROC) curves were constructed at 3, 6, and 12 months to assess the predictive ability of death for the following scoring systems: CURB-65, CRB-65, SCAP, CORB, ADROP, NEWS, Pneumonia Shock, REA-ICU, PSI, SMART-COP, SMRT-CO, SOAR, qSOFA, SIRS, CAPSI, and Charlson Comorbidity Index (CCI). Results: A total of 3688 patients were included in the final analysis. Mortality at 3, 6, and 12 months was 5.2%, 8.3%, and 16.3% respectively. At 3 months, PSI, CCI, and CRB-65 scores showed ROC curves of 0.74 (95% CI: 0.71–0.77), 0.71 (95% CI: 0.67–0.74), and 0.70 (95% CI: 0.66–0.74). At 6 months, PSI and CCI scores showed performances of 0.74 (95% CI: 0.72–0.77) and 0.72 (95% CI: 0.69–0.74), respectively. Finally at 12 months, all evaluated scores showed poor discriminatory capacity, including PSI, which decreased from acceptable to poor with an ROC curve of 0.64 (95% CI: 0.61–0.66). Conclusion: When predicting mortality in patients with CAP, at 3 months, PSI, CCI, and CRB-65 showed acceptable predictive performances. At 6 months, only PSI and CCI maintained acceptable levels of accuracy. For the 12-month period, all evaluated scores exhibited very limited discriminatory ability, ranging from poor to almost negligible

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore