432 research outputs found
Supranormal Expiratory Airflow after Bilateral Lung Transplantation is Associated with Improved Survival
RATIONALE:
flow volume loops (FVL) in some bilateral lung transplant (BLT) and heart-lung transplant (HLT) patients suggest variable extrathoracic obstruction in the absence of identifiable causes. These FVLs usually have supranormal expiratory and normal inspiratory flow rates (SUPRA pattern). OBJECTIVES:
characterize the relationship of the SUPRA pattern to predicted donor and recipient lung volumes, airway size, and survival. METHODS:
we performed a retrospective review of adult BLT/HLT patients. We defined the SUPRA FVL pattern as: (1) mid-vital capacity expiratory to inspiratory flow ratio (Ve50:Vi50) \u3e 1.0, (2) absence of identifiable causes of extrathoracic obstruction, and (3) Ve50/FVC ≥ 1.5 s(-1). We calculated predicted total lung capacity (pTLC) ratio by dividing the donor pTLC by the recipient pTLC. We measured airway luminal areas on thoracic computer tomographic scans. We compared survival in patients with and without the SUPRA pattern. MEASUREMENTS AND MAIN RESULTS:
the SUPRA FVL pattern occurred in 56% of the 89 patients who qualified for the analysis. The pTLC ratio of SUPRA and non-SUPRA patients was 1.11 and 0.99, respectively (P = 0.004). A higher pTLC ratio was correlated with increased probability of the SUPRA pattern (P = 0.0072). Airway luminal areas were larger in SUPRA patients (P = 0.009). Survival was better in the SUPRA cohort (P = 0.009). CONCLUSIONS:
the SUPRA FVL pattern was frequent in BLT/HLT patients. High expiratory flows in SUPRA patients could result from increased lung elastic recoil or reduced airway resistance, both of which could be caused by the pTLC mismatch. Improved survival in the SUPRA cohort suggests potential therapeutic approaches to improve outcomes in BLT/HLT patients
Detailed Investigation of the Role of Common and Low-Frequency WFS1 Variants in Type 2 Diabetes Risk
OBJECTIVE: Wolfram syndrome 1 (WFS1) single nucleotide polymorphisms (SNPs) are associated with risk of type 2 diabetes. In this study we aimed to refine this association and investigate the role of low-frequency WFS1 variants in type 2 diabetes risk. RESEARCH DESIGN AND METHODS: For fine-mapping, we sequenced WFS1 exons, splice junctions, and conserved noncoding sequences in samples from 24 type 2 diabetic case and 68 control subjects, selected tagging SNPs, and genotyped these in 959 U.K. type 2 diabetic case and 1,386 control subjects. The same genomic regions were sequenced in samples from 1,235 type 2 diabetic case and 1,668 control subjects to compare the frequency of rarer variants between case and control subjects. RESULTS: Of 31 tagging SNPs, the strongest associated was the previously untested 3' untranslated region rs1046320 (P = 0.008); odds ratio 0.84 and P = 6.59 x 10(-7) on further replication in 3,753 case and 4,198 control subjects. High correlation between rs1046320 and the original strongest SNP (rs10010131) (r2 = 0.92) meant that we could not differentiate between their effects in our samples. There was no difference in the cumulative frequency of 82 rare (minor allele frequency [MAF] 100,000) or studies in ethnically diverse populations. Low frequency variants in WFS1 are unlikely to have a large impact on type 2 diabetes risk in white U.K. populations, highlighting the complexities of undertaking association studies with low-frequency variants identified by resequencing
Phenotypic characteristics of early Wolfram syndrome
BACKGROUND: Wolfram Syndrome (WFS:OMIM 222300) is an autosomal recessive, progressive, neurologic and endocrinologic degenerative disorder caused by mutations in the WFS1 gene, encoding the endoplasmic reticulum (ER) protein wolframin, thought to be involved in the regulation of ER stress. This paper reports a cross section of data from the Washington University WFS Research Clinic, a longitudinal study to collect detailed phenotypic data on a group of young subjects in preparation for studies of therapeutic interventions. METHODS: Eighteen subjects (ages 5.9–25.8, mean 14.2 years) with genetically confirmed WFS were identified through the Washington University International Wolfram Registry. Examinations included: general medical, neurologic, ophthalmologic, audiologic, vestibular, and urologic exams, cognitive testing and neuroimaging. RESULTS: Seventeen (94%) had diabetes mellitus with the average age of diabetes onset of 6.3 ± 3.5 years. Diabetes insipidus was diagnosed in 13 (72%) at an average age of 10.6 ± 3.3 years. Seventeen (94%) had optic disc pallor and defects in color vision, 14 (78%) had hearing loss and 13 (72%) had olfactory defects, eight (44%) had impaired vibration sensation. Enuresis was reported by four (22%) and nocturia by three (17%). Of the 11 tested for bladder emptying, five (45%) had elevated post-void residual bladder volume. CONCLUSIONS: WFS causes multiple endocrine and neurologic deficits detectable on exam, even early in the course of the disease. Defects in olfaction have been underappreciated. The proposed mechanism of these deficits in WFS is ER stress-induced damage to neuronal and hormone-producing cells. This group of subjects with detailed clinical phenotyping provides a pool for testing proposed treatments for ER stress. Longitudinal follow-up is necessary for establishing the natural history and identifying potential biomarkers of progression
IMPLEmenting a clinical practice guideline for acute low back pain evidence-based manageMENT in general practice (IMPLEMENT) : cluster randomised controlled trial study protocol
Background: Evidence generated from reliable research is not frequently implemented into clinical practice. Evidence-based clinical practice guidelines are a potential vehicle to achieve this. A recent systematic review of implementation strategies of guideline dissemination concluded that there was a lack of evidence regarding effective strategies to promote the uptake of guidelines. Recommendations from this review, and other studies, have suggested the use of interventions that are theoretically based because these may be more effective than those that are not. An evidencebased clinical practice guideline for the management of acute low back pain was recently developed in Australia. This provides an opportunity to develop and test a theory-based implementation intervention for a condition which is common, has a high burden, and for which there is an evidence-practice gap in the primary care setting. Aim: This study aims to test the effectiveness of a theory-based intervention for implementing a clinical practice guideline for acute low back pain in general practice in Victoria, Australia. Specifically, our primary objectives are to establish if the intervention is effective in reducing the percentage of patients who are referred for a plain x-ray, and improving mean level of disability for patients three months post-consultation. Methods/Design: This study protocol describes the details of a cluster randomised controlled trial. Ninety-two general practices (clusters), which include at least one consenting general practitioner, will be randomised to an intervention or control arm using restricted randomisation. Patients aged 18 years or older who visit a participating practitioner for acute non-specific low back pain of less than three months duration will be eligible for inclusion. An average of twenty-five patients per general practice will be recruited, providing a total of 2,300 patient participants. General practitioners in the control arm will receive access to the guideline using the existing dissemination strategy. Practitioners in the intervention arm will be invited to participate in facilitated face-to-face workshops that have been underpinned by behavioural theory. Investigators (not involved in the delivery of the intervention), patients, outcome assessors and the study statistician will be blinded to group allocation. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN012606000098538 (date registered 14/03/2006).The trial is funded by the NHMRC by way of a Primary Health Care Project Grant (334060). JF has 50% of her time funded by the Chief Scientist Office3/2006). of the Scottish Government Health Directorate and 50% by the University of Aberdeen. PK is supported by a NHMRC Health Professional Fellowship (384366) and RB by a NHMRC Practitioner Fellowship (334010). JG holds a Canada Research Chair in Health Knowledge Transfer and Uptake. All other authors are funded by their own institutions
Genetic analysis of the GLUT10 glucose transporter (SLC2A10) polymorphisms in Caucasian American type 2 diabetes
BACKGROUND: GLUT10 (gene symbol SLC2A10) is a facilitative glucose transporter within the type 2 diabetes (T2DM)-linked region on chromosome 20q12-13.1. Therefore, we evaluated GLUT10 as a positional candidate gene for T2DM in Caucasian Americans. METHODS: Twenty SNPs including 4 coding, 10 intronic and 6 5' and 3' to the coding sequence were genotyped across a 100 kb region containing the SLC2A10 gene in DNAs from 300 T2DM cases and 310 controls using the Sequenom MassArray Genotyping System. Allelic association was evaluated, and linkage disequilibrium (LD) and haplotype structure of SLC2A10 were also determined to assess whether any specific haplotypes were associated with T2DM. RESULTS: Of these variants, fifteen had heterozygosities greater than 0.80 and were analyzed further for association with T2DM. No evidence of significant association was observed for any variant with T2DM (all P ≥ 0.05), including Ala206Thr (rs2235491) which was previously reported to be associated with fasting insulin. Linkage disequilibrium analysis suggests that the SLC2A10 gene is contained in a single haplotype block of 14 kb. Haplotype association analysis with T2DM did not reveal any significant differences between haplotype frequencies in T2DM cases and controls. CONCLUSION: From our findings, we can conclude that sequence variants in or near GLUT10 are unlikely to contribute significantly to T2DM in Caucasian Americans
Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study
<p>Abstract</p> <p>Background</p> <p>Candidate gene and genome-wide association studies have both reproducibly identified several common Single Nucleotide Polymorphisms (SNPs) that confer type 2 diabetes (T2D) risk in European populations. Our aim was to evaluate the contribution to T2D of five of these established T2D-associated loci in the Arabic population from Tunisia.</p> <p>Methods</p> <p>A case-control design comprising 884 type 2 diabetic patients and 513 control subjects living in the East-Center of Tunisia was used to analyze the contribution to T2D of the following SNPs: E23K in <it>KCNJ11/Kir6.2</it>, K121Q in <it>ENPP1</it>, the -30G/A variant in the pancreatic β-cell specific promoter of Glucokinase, rs7903146 in <it>TCF7L2 </it>encoding transcription factor 7-like2, and rs7923837 in <it>HHEX </it>encoding the homeobox, hematopoietically expressed transcription factor.</p> <p>Results</p> <p><it>TCF7L2</it>-rs7903146 T allele increased susceptibility to T2D (OR = 1.25 [1.06–1.47], <it>P </it>= 0.006) in our study population. This risk was 56% higher among subjects carrying the TT genotype in comparison to those carrying the CC genotype (OR = 1.56 [1.13–2.16], <it>P </it>= 0.002). No allelic or genotypic association with T2D was detected for the other studied polymorphisms.</p> <p>Conclusion</p> <p>In the Tunisian population, <it>TCF7L2</it>-rs7903146 T allele confers an increased risk of developing T2D as previously reported in the European population and many other ethnic groups. In contrast, none of the other tested SNPs that influence T2D risk in the European population was associated with T2D in the Tunisian Arabic population. An insufficient power to detect minor allelic contributions or genetic heterogeneity of T2D between different ethnic groups can explain these findings.</p
Transgenic Overexpression of Active Calcineurin in β-Cells Results in Decreased β-Cell Mass and Hyperglycemia
BACKGROUND:Glucose modulates beta-cell mass and function through an initial depolarization and Ca(2+) influx, which then triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca(2+) signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that calcineurin/NFAT is essential for beta-cell proliferation, and that in its absence loss of beta-cells results in diabetes. We hypothesized that in contrast, activation of calcineurin might result in expansion of beta-cell mass and resistance to diabetes. METHODOLOGY/PRINCIPAL FINDINGS:To determine the role of activation of calcineurin signaling in the regulation of pancreatic beta-cell mass and proliferation, we created mice that expressed a constitutively active form of calcineurin under the insulin gene promoter (caCn(RIP)). To our surprise, these mice exhibited glucose intolerance. In vitro studies demonstrated that while the second phase of Insulin secretion is enhanced, the overall insulin secretory response was conserved. Islet morphometric studies demonstrated decreased beta-cell mass suggesting that this was a major component responsible for altered Insulin secretion and glucose intolerance in caCn(RIP) mice. The reduced beta-cell mass was accompanied by decreased proliferation and enhanced apoptosis. CONCLUSIONS:Our studies identify calcineurin as an important factor in controlling glucose homeostasis and indicate that chronic depolarization leading to increased calcineurin activity may contribute, along with other genetic and environmental factors, to beta-cell dysfunction and diabetes
Post Genome-Wide Association Studies of Novel Genes Associated with Type 2 Diabetes Show Gene-Gene Interaction and High Predictive Value
Recently, several Genome Wide Association (GWA) studies in populations of European descent have identified and validated novel single nucleotide polymorphisms (SNPs), highly associated with type 2 diabetes (T2D). Our aims were to validate these markers in other European and non-European populations, then to assess their combined effect in a large French study comparing T2D and normal glucose tolerant (NGT) individuals. rs7903146 SNP, were combined (8.68-fold for the 14% of French individuals carrying 18 to 30 risk alleles with an allelic OR of 1.24). With an area under the ROC curve of 0.86, only 15 novel loci were necessary to discriminate French individuals susceptible to develop T2D. strongly associate with T2D in French individuals, and mostly in populations of Central European descent but not in Moroccan subjects. Genes expressed in the pancreas interact together and their combined effect dramatically increases the risk for T2D, opening avenues for the development of genetic prediction tests
Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis
Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man
- …