478 research outputs found

    Revealing Complex Traits with Small Molecules and Naturally Recombinant Yeast Strains

    Get PDF
    SummaryHere we demonstrate that natural variants of the yeast Saccharomyces cerevisiae are a model system for the systematic study of complex traits, specifically the response to small molecules. As a complement to artificial knockout collections of S. cerevisiae widely used to study individual gene function, we used 314- and 1932-member libraries of mutant strains generated by meiotic recombination to study the cumulative, quantitative effects of natural mutations on phenotypes induced by 23 small-molecule perturbagens (SMPs). This approach reveals synthetic lethality between SMPs, and genetic mapping studies confirm the involvement of multiple quantitative trait loci in the response to two SMPs that affect respiratory processes. The systematic combination of natural variants of yeast and small molecules that modulate evolutionarily conserved cellular processes can enable a better understanding of the general features of complex traits

    Harnessing gene expression to identify the genetic basis of drug resistance

    Get PDF
    The advent of cost-effective genotyping and sequencing methods have recently made it possible to ask questions that address the genetic basis of phenotypic diversity and how natural variants interact with the environment. We developed Camelot (CAusal Modelling with Expression Linkage for cOmplex Traits), a statistical method that integrates genotype, gene expression and phenotype data to automatically build models that both predict complex quantitative phenotypes and identify genes that actively influence these traits. Camelot integrates genotype and gene expression data, both generated under a reference condition, to predict the response to entirely different conditions. We systematically applied our algorithm to data generated from a collection of yeast segregants, using genotype and gene expression data generated under drug-free conditions to predict the response to 94 drugs and experimentally confirmed 14 novel gene–drug interactions. Our approach is robust, applicable to other phenotypes and species, and has potential for applications in personalized medicine, for example, in predicting how an individual will respond to a previously unseen drug

    Using Expression and Genotype to Predict Drug Response in Yeast

    Get PDF
    Personalized, or genomic, medicine entails tailoring pharmacological therapies according to individual genetic variation at genomic loci encoding proteins in drug-response pathways. It has been previously shown that steady-state mRNA expression can be used to predict the drug response (i.e., sensitivity or resistance) of non-genotyped mammalian cancer cell lines to chemotherapeutic agents. In a real-world setting, clinicians would have access to both steady-state expression levels of patient tissue(s) and a patient's genotypic profile, and yet the predictive power of transcripts versus markers is not well understood. We have previously shown that a collection of genotyped and expression-profiled yeast strains can provide a model for personalized medicine. Here we compare the predictive power of 6,229 steady-state mRNA transcript levels and 2,894 genotyped markers using a pattern recognition algorithm. We were able to predict with over 70% accuracy the drug sensitivity of 104 individual genotyped yeast strains derived from a cross between a laboratory strain and a wild isolate. We observe that, independently of drug mechanism of action, both transcripts and markers can accurately predict drug response. Marker-based prediction is usually more accurate than transcript-based prediction, likely reflecting the genetic determination of gene expression in this cross

    Effect of angiotensin receptor blockade on insulin sensitivity and endothelial function in abdominally obese hypertensive patients with impaired fasting glucose

    Get PDF
    AngII (angiotensin II) may contribute to cardiovascular risk in obesity via adverse effects on insulin sensitivity and endothelial function. In the present study, we examined the effects of ARB (angiotensin receptor blocker) therapy (losartan, 100 mg/day) on insulin sensitivity and endothelial function in 53 subjects with stage I hypertension, abdominal obesity and impaired fasting glucose. The study design was a randomized double-blinded parallel design placebo-controlled multi-centre trial of 8 weeks duration. We used the hyperinsulinaemic-euglycaemic clamp technique to measure insulin sensitivity (expressed as the 'M/I' value) and RH-PAT (reactive hyperaemia-peripheral arterial tonometry) to measure endothelial function. Additional measures included HOMA (homoeostasis model assessment)-B, an index of pancreatic β-cell function, and markers of inflammation [e.g. CRP (C-reactive protein)] and oxidative stress (e.g. F2-isoprostanes). ARB therapy did not alter insulin sensitivity [5.2 (2.7) pre-treatment and 4.6 (1.6) post-treatment] compared with placebo therapy [6.1 (2.9) pre-treatment and 5.3 (2.7) post-treatment; P value not significant], but did improve the HOMA-B compared with placebo therapy (P=0.05). ARB therapy also did not change endothelial function [RH-PAT, 2.15 (0.7) pre-treatment and 2.11 (0.7) post-treatment] compared with placebo therapy [RH-PAT, 1.81 (0.5) pre-treatment and 1.76 (0.7) post-treatment; P value not significant]. Markers of inflammation and oxidative stress were not significantly changed by ARB therapy. In conclusion, ARB therapy did not alter peripheral insulin sensitivity or endothelial function in this cohort of patients with essential hypertension, abdominal obesity and impaired fasting glucose, but did improve pancreatic β-cell function

    Amino Acid Metabolic Origin as an Evolutionary Influence on Protein Sequence in Yeast

    Get PDF
    The metabolic cycle of Saccharomyces cerevisiae consists of alternating oxidative (respiration) and reductive (glycolysis) energy-yielding reactions. The intracellular concentrations of amino acid precursors generated by these reactions oscillate accordingly, attaining maximal concentration during the middle of their respective yeast metabolic cycle phases. Typically, the amino acids themselves are most abundant at the end of their precursor’s phase. We show that this metabolic cycling has likely biased the amino acid composition of proteins across the S. cerevisiae genome. In particular, we observed that the metabolic source of amino acids is the single most important source of variation in the amino acid compositions of functionally related proteins and that this signal appears only in (facultative) organisms using both oxidative and reductive metabolism. Periodically expressed proteins are enriched for amino acids generated in the preceding phase of the metabolic cycle. Proteins expressed during the oxidative phase contain more glycolysis-derived amino acids, whereas proteins expressed during the reductive phase contain more respiration-derived amino acids. Rare amino acids (e.g., tryptophan) are greatly overrepresented or underrepresented, relative to the proteomic average, in periodically expressed proteins, whereas common amino acids vary by a few percent. Genome-wide, we infer that 20,000 to 60,000 residues have been modified by this previously unappreciated pressure. This trend is strongest in ancient proteins, suggesting that oscillating endogenous amino acid availability exerted genome-wide selective pressure on protein sequences across evolutionary time

    Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study

    Get PDF
    Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178

    Cell-cycle-dependent transcriptional and translational DNA-damage response of 2 ribonucleotide reductase genes in S. cerevisiae

    Get PDF
    The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements in synchronized Saccharomyces cerevisiae cells suggest that RNR mRNA production is maximal in late G1 and S phases; however, damaged DNA induces RNR transcription throughout the cell cycle. But such en masse measurements reveal neither cell-to-cell heterogeneity in responses nor direct correlations between transcript and protein expression or localization in single cells which may be central to function. We overcame these limitations by simultaneous detection of single RNR transcripts and also Rnr proteins in the same individual asynchronous S. cerevisiae cells, with and without DNA damage by methyl methanesulfonate (MMS). Surprisingly, RNR subunit mRNA levels were comparably low in both damaged and undamaged G1 cells and highly induced in damaged S/G2 cells. Transcript numbers became correlated with both protein levels and localization only upon DNA damage in a cell cycle-dependent manner. Further, we showed that the differential RNR response to DNA damage correlated with variable Mec1 kinase activity in the cell cycle in single cells. The transcription of RNR genes was found to be noisy and non-Poissonian in nature. Our results provide vital insight into cell cycle-dependent RNR regulation under conditions of genotoxic stress.Massachusetts Institute of Technology. Center for Environmental Health Sciences (deriving from NIH P30-ES002109)National Institutes of Health (U.S.) (grant R01-CA055042)National Institutes of Health (U.S.) (grant DP1-OD006422)Massachusetts Institute of Technology (CSBi Merck-MIT Fellowship
    corecore