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ABSTRACT 19 

The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production 20 

of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements 21 

in synchronized S. cerevisiae cells suggest that RNR mRNA production is maximal in late 22 

G1 and S-phase; however, damaged DNA induces RNR transcription throughout the cell 23 

cycle. But such en masse measurements reveal neither cell-to-cell heterogeneity in 24 

responses, nor direct correlations between transcript and protein expression or 25 

localization in single cells which may be central to function. We overcame these 26 

limitations by simultaneous detection of single RNR transcripts and also Rnr proteins in 27 

the same individual asynchronous S. cerevisiae cells, with and without DNA-damage by 28 

methyl methanesulfonate (MMS).  Surprisingly, RNR subunit mRNA levels were 29 

comparably low in both damaged and undamaged G1 cells, and highly induced in 30 

damaged S/G2 cells.  Transcript numbers became correlated with both protein level and 31 

localization only upon DNA-damage in a cell-cycle dependent manner. Further we 32 

showed that the differential RNR response to DNA-damage correlated with variable Mec1 33 

kinase activity in the cell-cycle in single cells. The transcription of RNR genes was found 34 

to be noisy and non-Poissonian in nature. Our results provide vital insight into cell-cycle-35 

dependent RNR regulation under conditions of genotoxic stress. 36 

 37 

INTRODUCTION 38 

 39 

Unrepaired DNA-damage can result in cell growth arrest, apoptosis, premature aging, 40 

neurodegeneration and cancer (16, 18).  Because most DNA repair pathways require de novo 41 

synthesis of DNA, damaged DNA signals the increased production and activation of the RNR 42 

enzyme (25, 36, 40). In almost all eukaryotes the functional RNR enzyme consists of a large 43 

and a small subunit (25). The S. cerevisiae genes RNR1 and RNR3 code for the large subunit 44 

proteins, while RNR2 and RNR4 code for of the small subunit proteins (Figure 1). The active 45 

form of the small subunit is a Rnr2-Rnr4 heterodimer (9, 26), and it relocalizes to the cytoplasm 46 

from the nucleus upon DNA damage (2, 36) to make the functional holoenzyme with the large 47 

subunit. Additionally, upon DNA damage the transcription of all RNR genes are induced by the 48 

Mec1-Rad53 pathway (20, 35), which also controls the subcellular localization of the Rnr2-Rnr4 49 

heterodimer (23) and the activation of the RNR enzyme (39, 41). Much of our understanding of 50 

the response of RNR to DNA damage as a function of cell-cycle stage comes from bulk 51 
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biochemical studies involving the model eukaryote S. cerevisiae (Figure 1) (14, 15, 19).  52 

However, the synchronization methods employed in these studies may alter normal cell 53 

behavior. Further, mean-values probed in bulk population studies mask information on cell-to-54 

cell variability in response, which is clearly resolvable with single-cell level imaging (1, 6, 29, 55 

32). Moreover, mRNA and protein levels and localization are usually measured in separate 56 

experiments, and few studies have explored the measurement of both gene products in the 57 

same cells. 58 

 59 

As a consequence, it remains unclear whether RNR genes are induced uniformly across cells 60 

by DNA damage via a homogeneous amplification of the normal cell-cycle transcript 61 

distributions, or whether cell-cycle-stage-specific amplification of transcripts occurs. Additionally, 62 

correlated variation in protein and mRNA levels in individual cells in distinct stages of the cell 63 

cycle with and without genotoxic stress remains unexplored. For example, mRNA and protein 64 

levels were recently found to become correlated for a number of genes under conditions of 65 

osmotic stress using bulk mass spectrometry (22), whereas little-to-no correlation between 66 

mRNA and protein has been observed in several bulk and single-cell studies in unperturbed 67 

cells (12, 17, 32). This discrepancy is likely to be because of the longer half-lives of most 68 

proteins that results in slower fluctuations in their numbers with respect to mRNAs that typically 69 

degrade rapidly in a programmed manner (5, 32, 34).  70 

 71 

To overcome these limitations and reveal the possible cell-cycle-dependence of Rnr mRNA and 72 

protein to DNA damage, we assayed the transcriptional response of the RNR subunit genes by 73 

imaging single transcripts with fluorescence in situ hybridization (FISH) (28, 31, 37, 38), and 74 

subsequently combined this technique with immunofluorescence detection of Rnr proteins to 75 

simultaneously investigate their translational responses in the same individual cells as a 76 

function of the cell-cycle. 77 

 78 

MATERIALS AND METHODS 79 

 80 

Cell growth and mRNA FISH. All chemicals were from Sigma-Aldrich (St. Louis, MO), 81 

Invitrogen (Carlsbad, CA) or Ambion (Applied Biosystems, Austin, TX), unless otherwise noted. 82 

BY4741 cells were typically grown in YPD medium at 30°C with shaking. For experiments with 83 

RC634 cells YPDA (YPD with 0.003% Adenine hemisulfate) medium was used to avoid 84 

fluorescent purine precursors accumulating in the vacuoles. FISH was performed following 85 
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earlier studies in yeast (28, 31, 37, 38). Cells were diluted to an optical density (at 600 nm, 86 

OD600) of 0.15 in the appropriate medium from an overnight saturated culture, and allowed to 87 

grow to an OD600 of 0.5 in a 10 ml volume for each experiment. At this point the culture was 88 

divided into two halves and cells were diluted in an equal volume of either control or MMS 89 

containing medium and allowed to grow for another hour. At this time point both broad cell-cycle 90 

categories are still represented in the population. The final MMS concentration was 0.02% like 91 

in previous works (36). For FISH experiments, cells were fixed for 45 minutes by direct addition 92 

of formaldehyde to a final concentration of 4%. Cells were then washed twice in Buffer B (1.2 M 93 

sorbitol, 100 mM potassium phosphate in nuclease-free water), spheroplasted in Buffer B with 94 

100 mU/μl Lyticase, 0.06 mg/ml phenylmethylsulfonyl fluoride (PMSF), 28 mM β-95 

Mercaptoethanol, 10 mM Vanadyl Ribonucleoside Complex (VRC, New England Biolabs 96 

(Ipswich, MA)) at 30°C, and washed twice again in Buffer B. The cells were then resuspended in 97 

70% Ethanol and left overnight at 4°C. The cells were then resuspended for 5 minutes in wash 98 

buffer (2X SSC, 25% Formamide in nuclease free water) and resuspended in hybridization 99 

buffer (10 mM VRC, 1mg/ml BSA, 20X SSC, 0.5 mg/ml E.coli tRNA, 0.5mg/ml ssDNA, 100 

100mg/ml Dextran sulfate, 25% Formamide, 2X SSC, in nuclease-free water) with Alexa-568 101 

labeled probes against the target mRNA. mRNA probes were obtained from Biosearch 102 

Technologies (Novato, CA). Hybridization was allowed proceed overnight at 30°C. The cells 103 

were then washed with wash buffer and stained for 30 minutes with 1μg/ml DAPI to stain the 104 

DNA. The cells were then washed and resuspended in 2X SSC and mounted in ProLong Gold 105 

Antifade reagent on cover-slides. 106 

mRNA probe design. Each RNR gene was targeted by 40 of 20-nucleotide long DNA oligo 107 

probes each with a 3' Alexa 568 fluorophore. When designing probes we used bioinformatics to 108 

eliminate any probe which can potential cross-hybridize between genes like RNR1 and RNR3 109 

which show large similarities (13) in nucleotide sequence (Supplementary Figure S1). The 110 

efficacy of this approach is apparent in the fact that control untreated asynchronous cells 111 

expectedly do not show any RNR3 expression, while a subpopulation of the same cells clearly 112 

stain for high numbers of RNR1 in keeping with the known large fluctuations of RNR1 113 

expression in course of the normal cell cycle (15) (Figure 2B; Supplementary Figure S7). This 114 

indicates that RNR3 probes do not cross-hybridize with the ubiquitous RNR1 mRNA. 115 

Simultaneous detection of mRNA and protein. mRNA FISH was performed as before, 116 

followed by immunofluorescence for proteins. All reagents were specifically made from 117 

nuclease-free materials, to avoid degradation of transcripts. We verified that largely same 118 

mRNA numbers were obtained when FISH was performed alone and when FISH was 119 
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performed with immunofluorescence (Supplementary Figure S2). Following mRNA FISH, 120 

subsequent steps were performed in the blocking solution made from nuclease-free materials. 121 

Cells were blocked in 1% BSA in PBS for 1 hour. Cells were stained with the primary antibodies 122 

at 1:1000 dilution for 3 hours, and then with the Alex-647-tagged secondary antibodies at 1:200  123 

dilution for 1.5 hours following an earlier work (36). Cells were washed in 2X SSC and mounted 124 

in ProLong Gold Antifade reagent on cover-slides. The H2A-S129p antibody was obtained from 125 

Upstate (Millipore, Billerica, MA). All the Rnr antibodies used have been used in a previous 126 

study that demonstrated the translocation of Rnr2 and Rnr4 from the nucleus to the cytoplasm 127 

upon DNA damage (36). Rnr3 staining is not expected in WT cells in the absence of DNA-128 

damage. The weak basal staining we see in WT cells is comparable to that in a Δrnr3 strain 129 

(Supplementary Figure S3). However, with DNA-damage there is a clear induction of Rnr3 130 

expression in WT cells. The Rnr4 antibody worked well in assays where the cells are processed 131 

for flow cytometry, and showed proper nuclear localization in the absence of damage. A 132 

detergent permeabilization is used in this case. However, in FISH experiments the 133 

permeabilization is in 70% ethanol, which can potentially affect the recognition of a protein by its 134 

antibody. In our experiments the nuclear to cytoplasmic contrast of Rnr4 was poor when we 135 

attempted the simultaneous detection of RNR4 mRNA and Rnr4 protein. An induction of the 136 

signal could still be detected. But because of the lack of proper nuclear localization of Rnr4 in 137 

untreated cells, we have left this result out. 138 

 139 

Antibody stains for flow cytometry. Cells were grown and spheroplasted as before (except 140 

without VRC), permeabilized in 0.2% Tween-20 in Buffer B for 10 minutes, and blocked with 1% 141 

BSA in PBS for 1 hr. Antibody stains were then performed as above. Flow cytometry was 142 

performed on an Accuri C6 Flow Cytometer.  143 

 144 

Image and Statistical analyses. Images were acquired on an Observer Z1 microscope (Carl 145 

Zeiss, Jena, Germany) with a Hamamatsu Orca-ER camera (Hamamatsu, Hamamatsu City, 146 

Japan). Z-stack images in all channels were obtained. For mRNA spot counting we used an 147 

algorithm developed in a previous work (28). This has been used to count mRNA numbers in 148 

yeast (37), and we too verified that this works in our case (Supplementary Figure S4). mRNA 149 

numbers were reproducible among different experiments, and the variation of the means did not 150 

reflect the large variation within the population (Supplementary Figure S5). For evaluating total 151 

protein intensity, the edge-detection was performed on the phase image to extract the cell 152 

contours, and the antibody stain intensity was evaluated within this mask. The cells have 153 
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intrinsic autofluorescence, though this is low in the far-red wavelengths used. The mounting 154 

medium also introduces a certain amount of background fluorescence. The effects of these two 155 

factors are subtracted out by estimating the mean fluorescence levels in similarly mounted 156 

effectively unstained samples treated with just the secondary antibody. This mean intensity is 157 

subtracted from the measured intensities. Effort was made to use isolated single cells in all 158 

cases. Representative images were processed with ImageJ while all image analysis was 159 

performed in Matlab (Mathworks, Natick, MA). Statistical tests and graph plots were performed 160 

with Matlab and OriginPro 8.5 (OriginLab, Northampton, MA). 161 

 162 

RESULTS 163 

 164 

We first used single mRNA molecule FISH to measure RNR transcripts in a cell-cycle specific 165 

manner. Cell-cycle stage was deduced from nucleus and cell images (Figure 2 and 166 

Supplementary Figure S6). In control undamaged cells we found a stark absence of RNR1 167 

mRNA in nearly all budded cells, i.e. cells in S or G2, and only a subset of control unbudded G1 168 

cells had large amounts of RNR1 mRNA (Figure 2, Supplementary Figure S7). These results 169 

are consistent with previous bulk northern blot studies showing large fluctuations of RNR1 170 

mRNA in the course of the normal cell-cycle with transcript levels peaking in the late G1/early S 171 

phases(15), but the near total absence of RNR1 mRNA in budded cells was surprising. This 172 

indicates that RNR1 mRNA numbers drop precipitously as cells initiate DNA synthesis. Also 173 

consistent with bulk studies (13, 15, 19), RNR3 mRNA was entirely absent throughout the cell-174 

cycle in undamaged log-phase cells and the cell-cycle dependent differences RNR2 and RNR4 175 

transcript numbers were relatively small, though significant for RNR4 (Figure 2B). 176 

 177 

In contrast, cells damaged with the alkylating agent MMS for 1 hour exhibited clear induction of 178 

all four RNR mRNAs. RNR1 mRNA was highly induced from near absence in S/G2 cells, and 179 

for all RNR genes cell-cycle-dependent differences in mRNA numbers that were negligible in 180 

control cells became pronounced upon damage (Figure 2B). Thus, overall RNR transcriptional 181 

inductions observed upon DNA-damage in bulk studies are not mere amplifications of relative 182 

distributions of mRNA numbers across the cell-cycle in control untreated cells. Remarkably, G1 183 

mRNA numbers were largely comparable between control and damaged cells for all three 184 

normal cell-cycle RNR genes (RNR1, RNR2, RNR4), whereas S/G2 numbers were significantly 185 

different (Figure 2C). This was unexpected as in previous work, under conditions of DNA 186 

damage, cells exhibited induction of RNR1, RNR2 and RNR3 mRNA in α-factor arrested G1 187 
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cells with northern blot measurements (14, 15), leading to the conclusion that RNR gene 188 

induction is independent of the cell-cycle. And while a clear induction was seen, it should be 189 

noted that even in these studies the induction of RNR2 and RNR3 was lower in α-factor 190 

arrested cells compared to asynchronous cells. We investigated this discrepancy by using the 191 

same S. cerevisiae strain and conditions used in the previous studies, and found that the 192 

perceived induction was likely due to a small subpopulation of budded S/G2 cells that escape 193 

arrest; this subpopulation had an overwhelming RNR response to DNA-damage greatly biasing 194 

the mean (Supplementary Figure S8). Importantly 'shmooed' G1 cells showed no significant 195 

RNR2 induction. Also it is possible that α-factor arrested cells activate DNA-damage 196 

checkpoints differently from G1 cells in asynchronous cultures. This underscores the importance 197 

of studying cells in a normal asynchronous cycling population versus under α-factor arrest, and 198 

also the importance of single-cell response studies as opposed to bulk cell responses. Cell-199 

cycle dependent responses in the previous studies were performed with alkylation damage by 200 

MMS, though other forms of genotoxic stress were also shown to induce RNR expression. It can 201 

be expected that the RNR response in the cell-cycle would be different for other forms of lesions 202 

like double-strand breaks (DSBs) or those caused by ultraviolet (UV) radiation. We tested this 203 

possibility for damage by the UV-mimetic agent 4-NQO and the radio-mimetic DSB causing 204 

agent bleomycin in terms of the transcriptional responses of the large-subunit (R1) gene RNR1 205 

and the small-subunit (R2) gene RNR2.  For both these agents we found that the transcriptional 206 

induction response was much larger in S/G2 cells than G1 cells. The induction of RNR2 in G1 207 

was significant, but still much smaller than that in S/G2 cells (Supplementary Figure S9). Thus 208 

the cell-cycle dependent induction of RNR genes seems to be a general feature of at least three 209 

different forms of genotoxic stress. RNR induction when present is severely abrogated in G1 210 

cells in asynchronous cultures. 211 

 212 

Next, we determined whether the protein induction correlates with transcript induction, and how 213 

transcript induction relates to protein localization. We detected endogenous RNR mRNA and 214 

Rnr protein in the same cells by FISH and antibody staining respectively. Rnr protein levels 215 

showed significant induction in S/G2 cells upon damage (Figure 3A). By staining mRNA in the 216 

same cells we were able to correlate RNR1, RNR2 and RNR3 gene products on a cell-by-cell 217 

basis (Figure 3B). Fluctuations in mRNA in the normal cell-cycle may not reflect in protein 218 

levels. But under conditions of stress, cell-cycle dependent induction of both transcript and 219 

protein were observed. Whereas levels were heterogeneous across individual cells, clear 220 

induction of mean-levels over cells was seen for both mRNA and protein. Unfortunately the 221 
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Rnr4 antibody did not work in the assay for simultaneous detection of mRNA and protein, and 222 

this is discussed in the Materials and Methods section. 223 

 224 

In addition to R1 (Rnr1 and Rnr3)  levels, active RNR enzyme numbers are regulated by the 225 

nuclear to cytoplasmic translocation of the R2 proteins (Rnr2 and Rnr4) upon DNA-damage (19, 226 

36) (Figure 1) and Sml1-mediated inhibition of the RNR enzyme (39, 41). There was no obvious 227 

relation between Nuclear to Cytoplasmic Ratio (NCR) of Rnr2 and the number of RNR2 228 

transcripts in control cells. But after one-hour of DNA-damage we observed that the cells that 229 

still had nuclear Rnr2 were typically in G1, and that these cells had low RNR2 transcripts. In 230 

contrast S/G2 cells exhibited clearly homogeneous or cytosolic Rnr2 and high numbers of 231 

RNR2 transcripts (Figure 4). While it is known that the Mec1-Rad53 pathway controls both the 232 

transcriptional induction of the RNR genes (20, 35) and the subcellular relocalization of Rnr2-233 

Rnr4 (23), we show here that both of these responses are cell-cycle-dependent in 234 

asynchronous cell populations. In previous studies no nuclear to cytoplasmic translocation of 235 

Rnr2 or Rnr4 was observed in α-factor arrested G1 cells, and this was attributed to a possible 236 

lower activation of the Mec1-Rad53 pathway in these cells (36). However, recent research has 237 

demonstrated that the Mec1 kinase can be activated throughout the cell-cycle by two 238 

independent mechanisms dependent on the 9-1-1 complex and DNA polymerase ε (27).  This 239 

study used the DNA-damage-dependent phosphorylation of the yeast histone H2A at Serine 240 

129  (H2A-S129p) as a direct readout of Mec1 kinase activity (27).  Hence we next adapted our 241 

approach of simultaneous detection of protein and mRNA to determine whether Mec1 kinase 242 

activity varies in the cell-cycle in a manner similar to the RNR transcriptional response. 243 

 244 

Both asynchronous and α-factor arrested cells showed similar relative inductions H2A-S129p 245 

upon DNA-damage in terms of the mean response (Supplementary Figure S10). When we 246 

performed simultaneous detection of RNR2 mRNA and H2A-S129p in the same cells in an 247 

asynchronous population, we found an expected correlation between Mec1 kinase activity and 248 

RNR2 induction upon DNA-damage (Figure 5). However, both responses were cell-cycle 249 

dependent, and S/G2 cells clearly separated from G1 cells upon damage. The means show 250 

similar trends for both RNR2 and H2A-S129p induction, the few G1 cells that showed high H2A-251 

S129p staining also generally had higher RNR2 mRNA. Thus, in response to MMS-damage G1 252 

cells display much lower Mec1 kinase activity compared to S/G2 cells. While lower RNR2 253 

expression in G1 cells was expected, the corresponding lower Mec1 kinase activity was 254 

somewhat surprising because a previous study has shown that Mec1 can be activated 255 
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throughout the cell-cycle (27), and we too detected Mec1 activity in α-factor arrested cells 256 

(Supplementary Figure S10).  Future work will explore if this is a peculiarity of the damage 257 

caused by MMS, or if the 9-1-1 dependent pathway operating in G1 is less efficient at activating 258 

Mec1 than the Pol ε dependent pathway which operates in the S-phase in conjunction to 9-1-1 259 

(27). 260 

 261 

Finally, a core strength of investigating single-cell responses is that forms of the underlying 262 

distributions across cell populations can be assessed in addition to the means. The RNR2 263 

mRNA distributions appeared bi-modal when cell cycle stage was ignored, but the two peaks 264 

resolved into two overlapping uni-modal distributions when cells were classified according to cell 265 

cycle. The two peaks were not as well-resolved in the RNR4 data. Single-cell level variability or 266 

‘noise’ in RNR mRNA expression generally increased upon DNA damage, with the large 267 

subunits exhibiting greater variability in comparison with the small subunits (Figure 6) when 268 

resolved according to the cell-cycle stage. Fano factors (σ2/μ - variance by mean of the 269 

distributions) quantify this noise, and a Poissonian distribution has a Fano factor of 1 as 270 

expected for mRNA production with constant probability in time (29, 32). 'Transcriptional 271 

bursting' can however result in larger variability within the population and consequently higher 272 

Fano factors (29). Control, untreated mRNA distributions for all RNRs exhibited Fano factors 273 

greater than 1, indicative of noisy, non-Poissonian transcriptional processes (29, 32). While 274 

expression noise generally increased upon induction by DNA damage for most of the RNRs 275 

when parsed according to the cell-cycle, the assumption of a steady-state that is required to 276 

mechanistically interpret these distributions is not satisfied due to the transient nature of the 277 

DNA-damage response. Similar Fano factors cannot be calculated for the protein distributions 278 

as absolute numbers are not measured (29), but these exhibit different forms from the mRNA 279 

distributions (Supplementary Figure S11).  280 

 281 

DISCUSSION 282 

 283 

The principal conclusion of this work is that the RNR response to DNA damage does not 284 

operate similarly across the cell cycle at either the transcript or the protein level. We also show 285 

that these responses correlate even at the single-cell level with each other and with Mec1 286 

kinase activity across the cell-cycle. Control of Rnr protein level and localization in turn 287 

regulates RNR enzyme numbers and implies that the dNTP synthesis potential of cell 288 

subpopulations varies according to cell-cycle stage under conditions of genotoxic stress. Such  289 
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fine-tuning of dNTP levels may possibly minimize spontaneous mutations within the population. 290 

Our results concur with a previous study showing that dNTP levels are low in G1 and high in S 291 

phase, and that constitutively high dNTP levels transiently arrest cells in late G1 and inhibit the 292 

DNA-damage checkpoint (11). It is not well understood why dNTP levels should necessarily be 293 

low in G1. Lesion bypass by DNA polymerases has been shown to be dependent on dNTP 294 

concentrations (30). In an in vitro assay, the replicative DNA polymerase ε could not bypass 4-295 

NQO induced 8-oxoG lesions at normal S-phase concentrations of dNTP, but could bypass it 296 

when the concentrations were comparable to the DNA-damage induced state (30). Another 297 

independent line of evidence has demonstrated abundant incorporation of ribonucleotides into 298 

DNA by yeast replicative polymerases that if left unrepaired can block Pol ε (24). This in turn 299 

may activate the Mec1-Rad53 pathway (27) and the downstream RNR transcriptional response 300 

(20, 35). Given the large molar excess of rNTPs over dNTPs in cells (24), upregulating dNTP 301 

production may reduce rNTP misincorporation into DNA. However, it is well known that while 302 

dNTPs are essential for responding to genotoxic stress, high dNTP levels are mutagenic and 303 

the RNR enzyme is subject to dATP feedback inhibition (10). The Mec1-Rad53-Dun1 target 304 

Sml1 too regulates the activity of the RNR enzyme (39, 41).Thus cells have evolved a number 305 

of mechanisms for regulating dNTP concentrations by controlling the levels, localization and 306 

activation state of the RNR enzyme components. Our work shows that the observed low dNTP 307 

levels in G1 can, at least in part, be due to low absolute numbers of the active enzyme in this 308 

cell-cycle stage. 309 

 310 

Expressions of RNR2, RNR3 and RNR4 genes are controlled by the transcriptional repressor 311 

Crt1, while RNR1 is under the regulation of the activator Ixr1 through a Dun1 independent 312 

branch of the Mec1-Rad53 pathway (20, 35). The resultant highly heterogeneous mRNA 313 

distributions are consistent with models of transcriptional bursting of the RNR genes (29). Unlike 314 

mammalian cells, only a small subset of yeast genes are thought to undergo bursting, and 315 

promoter regions in these genes are enriched in TATA elements (38). Only 20% of yeast genes 316 

have TATA boxes in their promoters, and these are also enriched in stress related genes (3, 4), 317 

which have been shown to exhibit particularly noisy expression (3). The RNR genes also have 318 

TATA regulatory elements in their promoters (4, 33), supporting the observed non-Poissonian 319 

nature of RNR transcription under control conditions. Functional consequences of this variability 320 

in expression may be important to ensure survival of subpopulations of cells under challenging 321 

environmental conditions (1, 29). Future work will explore how the heterogeneity in RNR 322 

expression promotes cell survival. 323 
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 324 

In the broader context of gene expression, a previous study that explored simultaneous 325 

detection of YFP-tagged E.coli proteins and the transcripts that encoded them, found little 326 

correlation between the levels of these two gene products (32). However, fluorescent protein 327 

signals are severely attenuated in most fixation procedures and both mRNA numbers and 328 

protein levels can be affected by the addition of tags. Further, mRNA-protein correlations under 329 

conditions of stress have not been explored at the single cell level, as reported here in the 330 

model eukaryote S. cerevisiae. The methods developed here for monitoring endogenous mRNA 331 

and protein levels simultaneously offers important insight into RNR enzyme regulation in 332 

eukaryotes, showing clear cell-cycle-dependent partitioning of the RNR response both in terms 333 

of the mRNA and protein induction, and the subcellular trafficking of Rnr subunits. RNR genes 334 

are overexpressed in many cancers (7, 8, 21). This work establishes an experimental platform 335 

for subsequent studies on the effects of DNA damage in metazoan cells that may serve to 336 

investigate the development and progression of cancer, which requires understanding the 337 

misregulation of expression patterns at the single-cell level that result in disease phenotype. 338 
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FIGURES AND FIGURE LEGENDS 464 

 465 

 466 

 467 

Figure 1. S. cerevisiae RNR enzyme response to damage. (A) The functional RNR 468 

holoenzyme consists of a large and a small subunit, in almost all eukaryotes from yeast to 469 

humans. The form of the enzyme can be more complex than α2β2. Levels of all Rnr proteins go 470 

up, and Rnr2-Rnr4 translocate to the cytoplasm upon DNA-damage in S. cerevisiae. (B) The 471 

cytosolic Rnr1 and Rnr3 proteins constitute the large subunit, R1 and the Rnr2 and Rnr4 472 

proteins constitute the small subunit (R2). The active form of the small subunit is an Rnr2-Rnr4 473 

heterodimer (ββ'), which normally resides in the nucleus but relocalizes to the cytoplasm upon 474 

DNA-damage. Rnr3 is not expressed in the absence of DNA-damage. 475 
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 476 

Figure 2. RNR mRNA induction depends on cell-cycle stage. (A) A typical single-molecule 477 

mRNA FISH experiment is shown. RNR4 mRNA transcripts are targeted with Alexa 568-labeled 478 

DNA oligo probes. DAPI stained DNA and phase-contrast images are also acquired to judge 479 

cell-cycle stage. The scale-bar shown is 2 μm. Z-projected images for the mRNA and DNA are 480 

shown. (B) Mean-numbers computed from mRNA distribution histograms for approximately 90-481 

120 such cells are plotted for RNR1, RNR2, RNR3 and RNR4 mRNA for control cells and under 482 

conditions of DNA-damage by treatment with 0.02% MMS for 1 hour. Blue bars indicate 483 

unbudded G1 cells while red bars denote budded S/G2 cells. While absolute numbers of RNR1 484 

mRNA is lower than RNR2 and RNR4 in untreated cells, the relative fluctuation is greatest for 485 

RNR1 due to the near-complete absence in budded cells (see also Figure 6 for RNR1 mRNA 486 

distributions). The relative distributions shift unexpectedly upon DNA-damage. (C) The same 487 

data as (B) parsed according to the cell-cycle stage to compare mRNA numbers in one cell-488 

cycle stage between control and damaged cells. Light-hatched bars denote control cells while 489 

dense-hatched bars denote damaged cells. In all cases the error-bars are standard errors. '*' 490 

indicates p<10-3 in a Kolmogorov-Smirnov test (a non-parametric test is preferable given the 491 

non-normal nature of some of the mRNA distributions). 492 
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 493 

 494 

Figure 3. RNR transcript numbers show a cell-cycle dependent relation to protein levels 495 

and localization upon DNA damage. (A) Mean Rnr protein intensities with standard errors and 496 

(B) mRNA numbers and protein intensities on a cell-by-cell basis are plotted for Rnr1 (N=71 497 

cells), Rnr2 (N=57 cells) and Rnr3 (N=64 cells). Equal numbers of cells were considered for the 498 

control and DNA-damage (1 hr) samples. The staining for Rnr3 in the absence of damage was 499 

non-specific. In every graph blue squares or bars indicate G1 cells while red circles or bars 500 

indicate S/G2 cells. Note while S/G2 cells have little or no RNR1 mRNA (like Figure 2) 501 

compared to G1 cells, the protein levels are similar in untreated control cells. A clear separation 502 

of G1 and S/G2 cells in MMS treated samples was observed. '*' indicates p<10-3 in a 503 

Kolmogorov-Smirnov test.  504 

 505 
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 506 

Figure 4. RNR2 transcript numbers show a cell-cycle dependent relation to Rnr2 protein 507 

localization upon DNA damage. (A) In the control population RNR2 mRNA number in cells are 508 

uncorrelated with the nuclear to cytoplasmic ratio of Rnr2 and there is no obvious segregation in 509 

the cell-cycle. However, upon DNA-damage the S/G2 cells show a higher accumulation of Rnr2 510 

in the cytoplasm and higher induction of RNR2 mRNA (N=53 cells each). (B) A typical image is 511 

shown for the small-subunit Rnr2 upon DNA-damage. Rnr2 is normally nuclear-localized in 512 

control cells. At the one-hour time-point there are still cells with nuclear Rnr2. The G1 cells with 513 

nuclear Rnr2 have fewer RNR2 transcripts, while the S/G2 cell shows visibly larger RNR2 514 

expression and a homogenous distribution of the Rnr2 protein. The scale-bar shown is 2 μm. Z-515 

projected images for the DNA, mRNA and protein are shown. The cell-cycle stages are 516 

indicated. 517 
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 518 

Figure 5. RNR2 induction correlates with variable Mec1 kinase activity in the cell-cycle. 519 

(A) Two typical cells from an MMS-treated sample are shown. Note the higher H2A-S129p 520 

staining, indicative of Mec1 kinase activity, in the budded cell correlates with higher RNR2 521 

mRNA numbers. The scale-bar shown is 2 μm. In the merged image, DNA is in blue, H2A-522 

S129p in green, RNR2 mRNA in red and the phase image is grey. (B) RNR2 mRNA numbers 523 

are plotted against H2A-S129p stain intensity in control untreated cells and MMS-treated cells 524 

(N=85 cells each). The Pearson's r value for the untreated sample is 0.16 while it is 0.6 with 525 

DNA-damage. The H2A-S129p stain intensity is normalized by the DNA-intensity evaluated in 526 

the same nuclear mask to ensure that the differential response between G1 and S/G2 cells is 527 

not merely a function of DNA synthesis. (C) The mean values for the H2A-S129p stain intensity 528 

and RNR2 mRNA from the graphs in (B). '*' indicates p<10-3 in a Kolmogorov-Smirnov test. 529 
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530 
Figure 6. mRNA histograms capture heterogeneity within the cell population. mRNA 531 

histograms and corresponding Fano factors for the studied RNR genes for (A) all cells (B) G1 532 

cells (C) S/G2 cells. White bars denote control cells while black bars denote damaged cells. 533 

When expressed all RNR genes have Fano factors greater than 1, indicating non-Poissonian 534 

transcription processes. Note the higher Fano factors for damaged cells generally when parsed 535 

according to the cell-cycle, though this is within error-bars for RNR1 in G1. Also when they are 536 

expressed, R1 genes have higher Fano factors than R2 genes. The error-bars of the Fano 537 

factors are standard deviations obtained by bootstrapping from the distributions on the left. 538 

 539 














