2,544 research outputs found

    Darboux class of cosmological fluids with time-dependent adiabatic indices

    Full text link
    A one-parameter family of time dependent adiabatic indices is introduced for any given type of cosmological fluid of constant adiabatic index by a mathematical method belonging to the class of Darboux transformations. The procedure works for zero cosmological constant at the price of introducing a new constant parameter related to the time dependence of the adiabatic index. These fluids can be the real cosmological fluids that are encountered at cosmological scales and they could be used as a simple and efficient explanation for the recent experimental findings regarding the present day accelerating universe. In addition, new types of cosmological scale factors, corresponding to these fluids, are presentedComment: document with the following three latex files: 1) quhm.tex: 17 pages, 10 figs, 16 numbered refs, Honorable Mention GRF 2000, 2) errad.tex: Errata and Addenda (EaA) of 5 pages with 2 figs enclosed, 3) analogy.tex: Negative friction of Darboux cosmological fluids of 4 page

    Natural extension of the Generalised Uncertainty Principle

    Full text link
    We discuss a gedanken experiment for the simultaneous measurement of the position and momentum of a particle in de Sitter spacetime. We propose an extension of the so-called generalized uncertainty principle (GUP) which implies the existence of a minimum observable momentum. The new GUP is directly connected to the nonzero cosmological constant, which becomes a necessary ingredient for a more complete picture of the quantum spacetime.Comment: 4 pages, 1 figure, v2 with added references, revised and extended as published in CQ

    Phantom Accretion onto the Schwarzschild de-Sitter Black Hole

    Full text link
    We deal with phantom energy accretion onto the Schwarzschild de-Sitter black hole. The energy flux conservation, relativistic Bernoulli equation and mass flux conservation equation are formulated to discuss the phantom accretion. We discuss the conditions for critical accretion. It is found that mass of the black hole decreases due to phantom accretion. There exist two critical points which lie in the exterior of horizons (black hole and cosmological horizons). The results for the phantom energy accretion onto the Schwarzschild black hole can be recovered by taking Λ0\Lambda\rightarrow0.Comment: 9 pages, no figur

    Time-dependent radiative transfer with PHOENIX

    Full text link
    Aims. We present first results and tests of a time-dependent extension to the general purpose model atmosphere code PHOENIX. We aim to produce light curves and spectra of hydro models for all types of supernovae. Methods. We extend our model atmosphere code PHOENIX to solve time-dependent non-grey, NLTE, radiative transfer in a special relativistic framework. A simple hydrodynamics solver was implemented to keep track of the energy conservation of the atmosphere during free expansion. Results. The correct operation of the new additions to PHOENIX were verified in test calculations. Conclusions. We have shown the correct operation of our extension to time-dependent radiative transfer and will be able to calculate supernova light curves and spectra in future work.Comment: 7 pages, 12 figure

    CPT symmetry and antimatter gravity in general relativity

    Full text link
    The gravitational behavior of antimatter is still unknown. While we may be confident that antimatter is self-attractive, the interaction between matter and antimatter might be either attractive or repulsive. We investigate this issue on theoretical grounds. Starting from the CPT invariance of physical laws, we transform matter into antimatter in the equations of both electrodynamics and gravitation. In the former case, the result is the well-known change of sign of the electric charge. In the latter, we find that the gravitational interaction between matter and antimatter is a mutual repulsion, i.e. antigravity appears as a prediction of general relativity when CPT is applied. This result supports cosmological models attempting to explain the Universe accelerated expansion in terms of a matter-antimatter repulsive interaction.Comment: 6 pages, to be published in EPL (http://epljournal.edpsciences.org/

    Determining the Cosmic Equation of State Using Future Gravitational Wave Detectors

    Get PDF
    The expected chirp mass distribution of observed events for future gravitational wave detectors is extensively investigated in the presence of an exotic fluid component with an arbitrary equation of state, 1ωxpx/ρx<0-1 \leq \omega_x \equiv p_x/\rho_x < 0, i.e., the so-called dark energy component. The results for a flat model dominated by a dark energy are compared to those for the standard flat model dominated by cold dark matter. It is found that for a flat universe the chirp mass distribution shows a sensitive dependence on ωx\omega_x, which may provide an independent and robust constraint on the cosmic equation of state.Comment: 5 pages, four figures, aa.sty LaTex fil

    Low energy conversion electron detection in superfluid He3 at ultra-low temperature

    Full text link
    We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3) prototype experiment concerning the measurement of low energy conversion electrons at ultra-low temperature. For the first time, the feasibility of the detection of low energy electrons is demonstrated in superfluid He3-B cooled down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell conversion of the 14.4 keV nuclear transition of a low activity Co57 source are detected, opening the possibility to use a He3-based detector for the detection of Weakly Interacting Massive Particles (WIMPs) which are expected to release an amount of energy higher-bounded by 5.6 keV.Comment: 8 pages, 3 figures, to appear in NIM

    An inhomogeneous universe with thick shells and without cosmological constant

    Full text link
    We build an exact inhomogeneous universe composed of a central flat Friedmann zone up to a small redshift z1z_1, a thick shell made of anisotropic matter, an hyperbolic Friedmann metric up to the scale where dimming galaxies are observed (z1.7z\simeq 1.7) that can be matched to a hyperbolic Lema\^{i}tre-Tolman-Bondi spacetime to best fit the WMAP data at early epochs. We construct a general framework which permits us to consider a non-uniform clock rate for the universe. As a result, both for a uniform time and a uniform Hubble flow, the deceleration parameter extrapolated by the central observer is always positive. Nevertheless, by taking a non-uniform Hubble flow, it is possible to obtain a negative central deceleration parameter, that, with certain parameter choices, can be made the one observed currently. Finally, it is conjectured a possible physical mechanism to justify a non-uniform time flow.Comment: Version published in Class. Quantum gra

    GRB 050408: An Atypical Gamma-Ray Burst as a Probe of an Atypical Galactic Environment

    Get PDF
    The bright GRB 050408 was localized by HETE-II near local midnight, enabling an impressive ground-based followup effort as well as space-based followup from Swift. The Swift data from the X-Ray Telescope (XRT) and our own optical photometry and spectrum of the afterglow provide the cornerstone for our analysis. Under the traditional assumption that the visible waveband was above the peak synchrotron frequency and below the cooling frequency, the optical photometry from 0.03 to 5.03 days show an afterglow decay corresponding to an electron energy index of p_lc = 2.05 +/- 0.04, without a jet break as suggested by others. A break is seen in the X-ray data at early times (at ~12600 sec after the GRB). The spectral slope of the optical spectrum is consistent with p_lc assuming a host-galaxy extinction of A_V = 1.18 mag. The optical-NIR broadband spectrum is also consistent with p = 2.05, but prefers A_V = 0.57 mag. The X-ray afterglow shows a break at 1.26 x 10^4 sec, which may be the result of a refreshed shock. This burst stands out in that the optical and X-ray data suggest a large H I column density of N_HI ~ 10^22 cm^-2; it is very likely a damped Lyman alpha system and so the faintness of the host galaxy (M_V > -18 mag) is noteworthy. Moreover, we detect extraordinarily strong Ti II absorption lines with a column density through the GRB host that exceeds the largest values observed for the Milky Way by an order of magnitude. Furthermore, the Ti II equivalent width is in the top 1% of Mg II absorption-selected QSOs. This suggests that the large-scale environment of GRB 050408 has significantly lower Ti depletion than the Milky Way and a large velocity width (delta v > 200 km/s).Comment: ApJ submitte

    Cosmological entropy and generalized second law of thermodynamics in F(R,G)F(R,G) theory of gravity

    Full text link
    We consider a spatially flat Friedmann-Lemaitre-Robertson-Walker space time and investigate the second law and the generalized second law of thermodynamics for apparent horizon in generalized modified Gauss Bonnet theory of gravity (whose action contains a general function of Gauss Bonnet invariant and the Ricci scalar: F(R,G)F(R,G)). By assuming that the apparent horizon is in thermal equilibrium with the matter inside it, conditions which must be satisfied by F(R,G)F(R,G) are derived and elucidated through two examples: a quasi-de Sitter space-time and a universe with power law expansion.Comment: 10 pages, minor changes, typos corrected, accepted for publication in Europhysics Letter
    corecore