5,327 research outputs found

    Dynamics of Massive Scalar Fields in dS Space and the dS/CFT Correspondence

    Get PDF
    Global geometric properties of dS space are presented explicitly in various coordinates. A Robertson-Walker like metric is deduced, which is convenient to be used in study of dynamics in dS space. Singularities of wavefunctions of massive scalar fields at boundary are demonstrated. A bulk-boundary propagator is constructed by making use of the solutions of equations of motion. The dS/CFT correspondence and the Strominger's mass bound is shown.Comment: latex, 14 pages and 3 figure

    Spintessence: a possible candidate as a driver of the late time cosmic acceleration

    Full text link
    In this paper, it is shown completely analytically that a spintessence model can very well serve the purpose of providing an early deceleration and the present day acceleration.Comment: 5 pages, no figure. Accepted for publication in Astrophysics and Space Scienc

    Viscous Dark Energy Models with Variable G and Lambda

    Full text link
    We consider a cosmological model with bulk viscosity (η\eta) and variable cosmological (Λ∝ρ−α,α=const.(\Lambda\propto \rho^{-\alpha}, \alpha=\rm const.) and gravitational (GG) constants. The model exhibits many interesting cosmological features. Inflation proceeds du to the presence of bulk viscosity and dark energy without requiring the equation of state p=−ρp=-\rho. During the inflationary era the energy density (ρ\rho) does not remain constant, as in the de-Sitter type. Moreover, the cosmological and gravitational constants increase exponentially with time, whereas the energy density and viscosity decrease exponentially with time. The rate of mass creation during inflation is found to be very huge suggesting that all matter in the universe was created during inflation.Comment: 6 Latex page

    Martingales, Singular Integrals, and Fourier Multipliers

    Get PDF
    Many probabilistic constructions have been created to study the Lp-boundedness, 1 \u3c p \u3c ∞, of singular integrals and Fourier multipliers. We will use a combination of analytic and probabilistic methods to study analytic properties of these constructions and obtain results which cannot be obtained using probability alone. In particular, we will show that a large class of operators, including many that are obtained as the projection of martingale transforms with respect to the background radiation process of Gundy and Varapolous or with respect to space-time Brownian motion, satisfy the assumptions of CalderĂłn-Zygmund theory and therefore boundedly map L1 to weak- L1. We will also use a method of rotations to study the L p boundedness, 1 \u3c p \u3c ∞, of Fourier multipliers which are obtained as the projections of martingale transforms with respect to symmetric α-stable processes, 0 \u3c α \u3c 2. Our proof does not use the fact that 0 \u3c α \u3c 2 and therefore allows us to obtain a larger class of multipliers, indexed by a parameter, 0 \u3c r \u3c ∞, which are bounded on L p. As in the case of the multipliers which arise as the projection of martingale transforms, these new multipliers also have potential applications to the study of the Beurling-Ahlfors transform and are related to the celebrated conjecture of T. Iwaniec concerning its exact Lp norm

    Opportunities for future supernova studies of cosmic acceleration

    Full text link
    We investigate the potential of a future supernova dataset, as might be obtained by the proposed SNAP satellite, to discriminate among different ``dark energy'' theories that describe an accelerating Universe. We find that many such models can be distinguished with a fit to the effective pressure-to-density ratio, ww, of this energy. More models can be distinguished when the effective slope, dw/dzdw/dz, of a changing ww is also fit, but only if our knowledge of the current mass density, Ωm\Omega_m, is improved. We investigate the use of ``fitting functions'' to interpret luminosity distance data from supernova searches, and argue in favor of a particular preferred method, which we use in our analysis.Comment: Four pages including figures. Final published version. No significant changes from v

    Domain walls in Born-Infeld-dilaton background

    Full text link
    We study the dynamics of domain walls in Einstein-Born-Infeld-dilaton theory. Dilaton is non-trivially coupled with the Born-Infeld electromagnetic field. We find three different types of solutions consistent with the dynamic domain walls. For every case, the solutions have singularity. Further more, in these backgrounds, we study the dynamics of domain walls. We qualitatively plot various form of the bulk metrics and the potential encountered by the domain walls. In many cases, depending upon the value of the parameters, the domain walls show bouncing universe and also undergo inflationary phase followed by standard decelerated expansion.Comment: 18 pages,6 figures,latex, References added, Some points clarifie

    The Nearby Supernova Factory

    Get PDF
    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03<z<0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ~12 SNe/month in 2003.Comment: 7 pages, 3 figures to be published in New Astronomy Review

    Cosmology with two compactification scales

    Get PDF
    We consider a (4+d)-dimensional spacetime broken up into a (4-n)-dimensional Minkowski spacetime (where n goes from 1 to 3) and a compact (n+d)-dimensional manifold. At the present time the n compactification radii are of the order of the Universe size, while the other d compactification radii are of the order of the Planck length.Comment: 16 pages, Latex2e, 7 figure

    Phantom Energy Accretion by Stringy Charged Black Hole

    Full text link
    We investigate the dynamical behavior of phantom energy near stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto black hole decreases its mass. Further, the location of critical points of accretion is explored, which yields mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.Comment: 7 pages, no figur
    • 

    corecore