3,550 research outputs found
The role of packaging sites in efficient and specific virus assembly
During the lifecycle of many single-stranded RNA viruses, including many
human pathogens, a protein shell called the capsid spontaneously assembles
around the viral genome. Understanding the mechanisms by which capsid proteins
selectively assemble around the viral RNA amidst diverse host RNAs is a key
question in virology. In one proposed mechanism, sequence elements (packaging
sites) within the genomic RNA promote rapid and efficient assembly through
specific interactions with the capsid proteins. In this work we develop a
coarse-grained particle-based computational model for capsid proteins and RNA
which represents protein-RNA interactions arising both from non-specific
electrostatics and specific packaging sites interactions. Using Brownian
dynamics simulations, we explore how the efficiency and specificity of assembly
depend on solution conditions (which control protein-protein and nonspecific
protein-RNA interactions) as well as the strength and number of packaging
sites. We identify distinct regions in parameter space in which packaging sites
lead to highly specific assembly via different mechanisms, and others in which
packaging sites lead to kinetic traps. We relate these computational
predictions to in vitro assays for specificity in which cognate viral RNAs are
compete against non-cognate RNAs for assembly by capsid proteins
Dynamics of Massive Scalar Fields in dS Space and the dS/CFT Correspondence
Global geometric properties of dS space are presented explicitly in various
coordinates. A Robertson-Walker like metric is deduced, which is convenient to
be used in study of dynamics in dS space. Singularities of wavefunctions of
massive scalar fields at boundary are demonstrated. A bulk-boundary propagator
is constructed by making use of the solutions of equations of motion. The
dS/CFT correspondence and the Strominger's mass bound is shown.Comment: latex, 14 pages and 3 figure
de Sitter black hole with a conformally coupled scalar field in four dimensions
A four-dimensional black hole solution of the Einstein equations with a
positive cosmological constant, coupled to a conformal scalar field, is given.
There is a curvature singularity at the origin, and scalar field diverges
inside the event horizon. The electrically charged solution, which has a fixed
charge-to-mass ratio is also found. The quartic self-interacting coupling
becomes bounded in terms of Newton's and the cosmological constants.Comment: 5 pages, no figures, CECS style, energy conditions are discussed and
some references were added. To appear in Phys. Rev.
The Nearby Supernova Factory
The Nearby Supernova Factory (SNfactory) is an ambitious project to find and
study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at
redshifts 0.03<z<0.08. This program will provide an exceptional data set of
well-studied SNe in the nearby smooth Hubble flow that can be used as
calibration for the current and future programs designed to use SNe to measure
the cosmological parameters. The first key ingredient for this program is a
reliable supply of Hubble-flow SNe systematically discovered in unprecedented
numbers using the same techniques as those used in distant SNe searches. In
2002, 35 SNe were found using our test-bed pipeline for automated SN search and
discovery. The pipeline uses images from the asteroid search conducted by the
Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction
techniques and analysis have allowed us to increase our effective SN discovery
rate to ~12 SNe/month in 2003.Comment: 7 pages, 3 figures to be published in New Astronomy Review
Phantom Accretion onto the Schwarzschild de-Sitter Black Hole
We deal with phantom energy accretion onto the Schwarzschild de-Sitter black
hole. The energy flux conservation, relativistic Bernoulli equation and mass
flux conservation equation are formulated to discuss the phantom accretion. We
discuss the conditions for critical accretion. It is found that mass of the
black hole decreases due to phantom accretion. There exist two critical points
which lie in the exterior of horizons (black hole and cosmological horizons).
The results for the phantom energy accretion onto the Schwarzschild black hole
can be recovered by taking .Comment: 9 pages, no figur
Reconstructing the Cosmic Equation of State from Supernova distances
Observations of high-redshift supernovae indicate that the universe is
accelerating. Here we present a {\em model-independent} method for estimating
the form of the potential of the scalar field driving this
acceleration, and the associated equation of state . Our method is
based on a versatile analytical form for the luminosity distance ,
optimized to fit observed distances to distant supernovae and differentiated to
yield and . Our results favor at the
present epoch, steadily increasing with redshift. A cosmological constant is
consistent with our results.Comment: 4 pages, 5 figures, uses RevTex. Minor typo's in equations (1) and
(10) correcte
Self-tuning of the cosmological constant
Here, I discuss the cosmological constant (CC) problems, in particular paying
attention to the vanishing cosmological constant. There are three cosmological
constant problems in particle physics. Hawking's idea of calculating the
probability amplitude for our Universe is peaked at CC = 0 which I try to
obtain after the initial inflationary period using a self-tuning model. I
review what has been discussed on the Hawking type calculation, and present a
(probably) correct way to calculate the amplitude, and show that the
Kim-Kyae-Lee self-tuning model allows a finite range of parameters for the CC =
0 to have a singularly large probability, approached from the AdS side.Comment: 12 pages with 8 figure
A critical-density closed Universe in Brans-Dicke theory
In a Brans-Dicke (BD) cosmological model, the energy density associated with
some scalar field decreases as \displaystyle a^{{-2}(\frac{\omega_{o}+
{\frac12}%}{\omega_{o}+1})} with the scale factor of the Universe,
giving a matter with an Equation of state . In this model, the Universe
could be closed but still have a nonrelativistic-matter density corresponding
to its critical value, . Different cosmological expressions, such
as, luminosity distance, angular diameter, number count and ratio of the
redshift tickness-angular size, are determined in terms of the redshift for
this model.Comment: To appear in MNRAS, 7 pages, 5 eps figure
SUSY Dark Matter in the Universe- Theoretical Direct Detection Rates
Exotic dark matter together with the vacuum energy or cosmological constant
seem to dominate in the Universe. An even higher density of such matter seems
to be gravitationally trapped in the Galaxy. Thus its direct detection is
central to particle physics and cosmology. Current supersymmetric models
provide a natural dark matter candidate which is the lightest supersymmetric
particle (LSP). Such models combined with fairly well understood physics like
the quark substructure of the nucleon and the nuclear structure (form factor
and/or spin response function), permit the evaluation of the event rate for
LSP-nucleus elastic scattering. The thus obtained event rates are, however,
very low or even undetectable. So it is imperative to exploit the modulation
effect, i.e. the dependence of the event rate on the earth's annual motion.
Also it is useful to consider the directional rate, i.e its dependence on the
direction of the recoiling nucleus. In this paper we study such a modulation
effect both in non directional and directional experiments. We calculate both
the differential and the total rates using both isothermal, symmetric as well
as only axially asymmetric, and non isothermal, due to caustic rings, velocity
distributions. We find that in the symmetric case the modulation amplitude is
small. The same is true for the case of caustic rings. The inclusion of
asymmetry, with a realistic enhanced velocity dispersion in the galactocentric
direction, yields an enhanced modulation effect, especially in directional
experiments.Comment: 17 LATEX pages, 1 table and 6 ps figures include
GRB 050408: An Atypical Gamma-Ray Burst as a Probe of an Atypical Galactic Environment
The bright GRB 050408 was localized by HETE-II near local midnight, enabling
an impressive ground-based followup effort as well as space-based followup from
Swift. The Swift data from the X-Ray Telescope (XRT) and our own optical
photometry and spectrum of the afterglow provide the cornerstone for our
analysis. Under the traditional assumption that the visible waveband was above
the peak synchrotron frequency and below the cooling frequency, the optical
photometry from 0.03 to 5.03 days show an afterglow decay corresponding to an
electron energy index of p_lc = 2.05 +/- 0.04, without a jet break as suggested
by others. A break is seen in the X-ray data at early times (at ~12600 sec
after the GRB). The spectral slope of the optical spectrum is consistent with
p_lc assuming a host-galaxy extinction of A_V = 1.18 mag. The optical-NIR
broadband spectrum is also consistent with p = 2.05, but prefers A_V = 0.57
mag. The X-ray afterglow shows a break at 1.26 x 10^4 sec, which may be the
result of a refreshed shock. This burst stands out in that the optical and
X-ray data suggest a large H I column density of N_HI ~ 10^22 cm^-2; it is very
likely a damped Lyman alpha system and so the faintness of the host galaxy (M_V
> -18 mag) is noteworthy. Moreover, we detect extraordinarily strong Ti II
absorption lines with a column density through the GRB host that exceeds the
largest values observed for the Milky Way by an order of magnitude.
Furthermore, the Ti II equivalent width is in the top 1% of Mg II
absorption-selected QSOs. This suggests that the large-scale environment of GRB
050408 has significantly lower Ti depletion than the Milky Way and a large
velocity width (delta v > 200 km/s).Comment: ApJ submitte
- …
