162 research outputs found

    Nonvanishing Cosmological Constant of Flat Universe in Brane-World Scenario

    Get PDF
    The finite temperature effect is examined in Randall-Sundrum brane-world scenario with inclusion of the matter fields on the brane. At zero temperature it is found that the theory on the brane is conformally invariant, which guarantees AdSAdS/CFT. At 4d effective action we derived a temperature-dependent nonvanishing cosmological constant at the flat spacetime limit of brane worldvolume. At the cosmological temperature 3K3 {\bf K} the cosmological constant is roughly (0.0004eV)4(0.0004 eV)^4 which is within the upper bound of the recent experimental value (0.01eV)4(0.01 eV)^4Comment: 10 pages, 1 figure; V2 12 pages, figure removed, the contribution of matter to the cosmological constant is added, will appear in PL

    Field theory models for variable cosmological constant

    Get PDF
    Anthropic solutions to the cosmological constant problem require seemingly unnatural scalar field potentials with a very small slope or domain walls (branes) with a very small coupling to a four-form field. Here we introduce a class of models in which the smallness of the corresponding parameters can be attributed to a spontaneously broken discrete symmetry. We also demonstrate the equivalence of scalar field and four-form models. Finally, we show how our models can be naturally embedded into a left-right extension of the standard model.Comment: A reference adde

    Quintessence and variation of the fine structure constant in the CMBR

    Get PDF
    We study dependence of the CMB temperature anisotropy spectrum on the value of the fine structure constant α\alpha and the equation of state of the dark energy component of the total density of the universe. We find that bounds imposed on the variation of α\alpha from the analysis of currently available CMB data sets can be significantly relaxed if one also allows for a change in the equation of state.Comment: 5 pages, 3 figures. Several references added and a few minor typos corrected in the revised versio

    An inhomogeneous universe with thick shells and without cosmological constant

    Full text link
    We build an exact inhomogeneous universe composed of a central flat Friedmann zone up to a small redshift z1z_1, a thick shell made of anisotropic matter, an hyperbolic Friedmann metric up to the scale where dimming galaxies are observed (z≃1.7z\simeq 1.7) that can be matched to a hyperbolic Lema\^{i}tre-Tolman-Bondi spacetime to best fit the WMAP data at early epochs. We construct a general framework which permits us to consider a non-uniform clock rate for the universe. As a result, both for a uniform time and a uniform Hubble flow, the deceleration parameter extrapolated by the central observer is always positive. Nevertheless, by taking a non-uniform Hubble flow, it is possible to obtain a negative central deceleration parameter, that, with certain parameter choices, can be made the one observed currently. Finally, it is conjectured a possible physical mechanism to justify a non-uniform time flow.Comment: Version published in Class. Quantum gra

    On likely values of the cosmological constant

    Get PDF
    We discuss models in which the smallness of the effective vacuum energy density \rho_\L and the coincidence of the time of its dominance t_\L with the epoch of galaxy formation tGt_G are due to anthropic selection effects. In such models, the probability distribution for \rho_\L is a product of an {\it a priori} distribution {\cal P}_*(\rho_\L) and of the number density of galaxies at a given \rho_\L (which is proportional to the number of observers who will detect that value of \rho_\L). To determine P∗{\cal P}_*, we consider inflationary models in which the role of the vacuum energy is played by a slowly-varying potential of some scalar field. We show that the resulting distribution depends on the shape of the potential and generally has a non-trivial dependence on \rho_\L, even in the narrow anthropically allowed range. This is contrary to Weinberg's earlier conjecture that the {\it a priori} distribution should be nearly flat in the range of interest. We calculate the (final) probability distributions for \rho_\L and for t_G/t_\L in simple models with power-law potentials. For some of these models, the agreement with the observationally suggested values of \rho_\L is better than with a flat {\it a priori} distribution. We also discuss quantum-cosmological approach in which \rho_\L takes different values in different disconnected universes and argue that Weinberg's conjecture is not valid in this case as well. Finally, we extend our analysis to models of quintessence, with similar conclusions.Comment: 24 pages, 2 figures; replaced with published versio

    Can the Chaplygin gas be a plausible model for dark energy?

    Get PDF
    In this note two cosmological models representing the flat Friedmann Universe filled with a Chaplygin fluid, with or without dust, are analyzed in terms of the recently proposed "statefinder" parameters. Trajectories of both models in the parameter plane are shown to be significantly different w.r.t. "quiessence" and "tracker" models. The generalized Chaplygin gas model with an equation of state of the form p=−A/ραp = -A/\rho^{\alpha} is also analyzed in terms of the statefinder parameters.Comment: 6 pages, 2 figure

    Dynamical System Approach to Cosmological Models with a Varying Speed of Light

    Get PDF
    Methods of dynamical systems have been used to study homogeneous and isotropic cosmological models with a varying speed of light (VSL). We propose two methods of reduction of dynamics to the form of planar Hamiltonian dynamical systems for models with a time dependent equation of state. The solutions are analyzed on two-dimensional phase space in the variables (x,x˙)(x, \dot{x}) where xx is a function of a scale factor aa. Then we show how the horizon problem may be solved on some evolutional paths. It is shown that the models with negative curvature overcome the horizon and flatness problems. The presented method of reduction can be adopted to the analysis of dynamics of the universe with the general form of the equation of state p=Îł(a)Ï”p=\gamma(a)\epsilon. This is demonstrated using as an example the dynamics of VSL models filled with a non-interacting fluid. We demonstrate a new type of evolution near the initial singularity caused by a varying speed of light. The singularity-free oscillating universes are also admitted for positive cosmological constant. We consider a quantum VSL FRW closed model with radiation and show that the highest tunnelling rate occurs for a constant velocity of light if c(a)∝anc(a) \propto a^n and −1<n≀0-1 < n \le 0. It is also proved that the considered class of models is structurally unstable for the case of n<0n < 0.Comment: 18 pages, 5 figures, RevTeX4; final version to appear in PR

    Electromagnetic waves in an axion-active relativistic plasma non-minimally coupled to gravity

    Full text link
    We consider cosmological applications of a new self-consistent system of equations, accounting for a nonminimal coupling of the gravitational, electromagnetic and pseudoscalar (axion) fields in a relativistic plasma. We focus on dispersion relations for electromagnetic perturbations in an initially isotropic ultrarelativistic plasma coupled to the gravitational and axion fields in the framework of isotropic homogeneous cosmological model of the de Sitter type. We classify the longitudinal and transversal electromagnetic modes in an axionically active plasma and distinguish between waves (damping, instable or running), and nonharmonic perturbations (damping or instable). We show that for the special choice of the guiding model parameters the transversal electromagnetic waves in the axionically active plasma, nonminimally coupled to gravity, can propagate with the phase velocity less than speed of light in vacuum, thus displaying a possibility for a new type of resonant particle-wave interactions.Comment: 19 pages, 9 figures, published versio
    • 

    corecore