29 research outputs found

    WNT4 Expression in Primary and Secondary Kidney Diseases: Dependence on Staging

    Get PDF
    Background/Aims: WNT4 protein is important for kidney development. Its expression was found to be altered in experimental models of chronic kidney disease (CKD). However, the expression of the WNT4 gene has yet not been studied in human renal biopsy samples from patients with broad spectrum of glomerular disease and at different stages of CKD. Thus, the aim of the study was to assess the WNT4 gene expression in renal biopsies of 98 patients using the real-time PCR technique. Materials: In order to assess the relative amounts of mRNA, in samples of patients with manifestation of different renal diseases and separately at different stages of CKD, by QPCR, total RNA was isolated from human kidney tissues collected during renal biopsies. Results of blood and urine samples assessment were used to calculate the correlations of biochemical parameters with WNT4 gene expression in both studied groups. Results: After pathomorphological evaluation, 49 patients were selected as presenting the most common cases in the studied group. Among the patients who developed focal segmental glomerulosclerosis (FSGS; n = 13), IgA nephropathy (IgAN; n = 10), IgAN with morphological presentation of focal segmental glomerulosclerosis (IgAN/FSGS; n = 8), membranous nephropathy (MN; n = 12), and lupus nephritis (LN; n = 6) were included in the analysis. We found that the level of WNT4 mRNA was higher in kidney specimens obtained from patients with MN as compared to those diagnosed with LN or IgAN. A correlation between WNT4 gene expression and serum albumin and cholesterol levels was observed in patients with FSGS, while WNT4 mRNA levels correlated with plasma sodium in patients diagnosed with LN. After consideration of 98 patients, based on the KDIGO classification of CKD, 20 patients were classified as CKD1 stage, 23 as stage 2, 13 as stage 3a, 11 as stage 3b, 13 as stage 4, and 18 as stage 5. WNT4 gene expression was lower in the CKD patients in stage 2 as compared to CKD 3a. Correlations of WNT4 mRNA level at different stages of CKD with indices of kidney function and lipid metabolism such as serum levels of HDL and LDL cholesterol, TG, urea, creatinine, sodium, and potassium were also found. Conclusions: Our results suggest that altered WNT4 gene expression in patients with different types of glomerular diseases and patients at different stages of CKD may play a role in kidney tissue disorganization as well as disease development and progression

    Urinary myeloid IgA Fc alpha receptor (CD89) and transglutaminase-2 as new biomarkers for active IgA nephropathy and henoch-Schönlein purpura nephritis

    Get PDF
    Background: IgA nephropathy (IgAN) and Henoch-Schönlein purpura nephritis (HSPN) are glomerular diseases that share a common and central pathogenic mechanism. The formation of immune complexes containing IgA1, myeloid IgA Fc alpha receptor (FcαRI/CD89) and transglutaminase-2 (TG2) is observed in both conditions. Therefore, urinary CD89 and TG2 could be potential biomarkers to identify active IgAN/HSPN. Methods: In this multicenter study, 160 patients with IgAN or HSPN were enrolled. Urinary concentrations of CD89 and TG2, as well as some other biochemical parameters, were measured. Results: Urinary CD89 and TG2 were lower in patients with active IgAN/HSPN compared to IgAN/HSPN patients in complete remission (P < 0.001). The CD89xTG2 formula had a high ability to discriminate active from inactive IgAN/HSPN in both situations. : CD89xTG2/proteinuria ratio (AUC: 0.84, P < 0.001, sensitivity: 76%, specificity: 74%) and CD89xTG2/urinary creatinine ratio (AUC: 0.82, P < 0.001, sensitivity: 75%, specificity: 74%). Significant correlations between urinary CD89 and TG2 (r = 0.711, P < 0.001), proteinuria and urinary CD89 (r = -0.585, P < 0.001), and proteinuria and urinary TG2 (r = -0.620, P < 0.001) were observed. Conclusions: Determination of CD89 and TG2 in urine samples can be useful to identify patients with active IgAN/HSPN

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (ï»żrs230540, OR = 1.25, P = 3.4 × 10−12) and IRF4 (ï»żrs9405192, OR = 1.29, P = ï»ż1.4 × 10−14), fine-map the PLA2R1 locus (ï»żrs17831251, OR = 2.25, P = 4.7 × 10−103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10−49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10−93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10−23 and OR = 3.39, P = 5.2 × 10−82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20–37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (ï»żrs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (ï»żrs9405192, OR = 1.29, P = ï»ż1.4 × 10-14), fine-map the PLA2R1 locus (ï»żrs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk

    Potential utility of urinary chemokine CCL2 to creatinine ratio in prognosis of 5‐year graft failure and mortality post 1‐year protocol biopsy in kidney transplant recipients

    No full text
    Abstract Background Chemokines (chemotactic cytokines) are small proteins which are engaged in many pathophysiological processes, including inflammation and homeostasis. In recent years, application of chemokines in transplant medicine was intensively studied. The aim of this study was to determine the utility of urinary chemokines CCL2 (C‐C motif ligand 2) and CXCL10 (C‐X‐C motif chemokine ligand 10) in prognosis of 5‐year graft failure and mortality post 1‐year protocol biopsy in renal transplant recipients. Methods Forty patients who had a protocol biopsy 1 year after renal transplantation were included. Concentrations of CCL2 and CXCL10 in urine with reference to urine creatinine were measured. All patients were under the supervision of one transplant center. Long‐term outcomes within 5 years after 1‐year posttransplant biopsy were analyzed. Results Urinary CCL2:Cr at the time of biopsy was significantly increased in patients who died or had graft failure. CCL2:Cr was proven to be a significant predictor of 5‐year graft failure and mortality (odds ratio [OR]: 1.09, 95% confidence interval [CI]: 1.02–1.19, p = .02; OR: 1.08, 95% CI: 1.02–1.16, p = .04; respectively). Conclusion Chemokines are easily detected by current methods. In the era of personalized medicine, urinary CCL2:Cr can be considered as a factor providing complementary information regarding risk of graft failure or increased mortality

    Killer Immunoglobulin-Like Receptor 2DS2 (KIR2DS2), KIR2DL2-HLA-C1, and KIR2DL3 as Genetic Markers for Stratifying the Risk of Cytomegalovirus Infection in Kidney Transplant Recipients

    No full text
    Infection with cytomegalovirus (CMV) remains a major problem in kidney transplant recipients, resulting in serious infectious complications and occasionally mortality. Accumulating evidence indicates that natural killer cell immunoglobulin-like receptors (KIRs) and their ligands affect the susceptibility to various diseases, including viral infections (e.g., CMV infection). We investigated whether KIR genes and their ligands affect the occurrence of CMV infection in a group of 138 kidney transplant recipients who were observed for 720 days posttransplantation. We typed the recipients for the presence of KIR genes (human leukocyte antigen C1 [HLA-C1], HLA-C2, HLA-A, HLA-B, and HLA-DR1) by polymerase chain reaction with sequence-specific primers. The multivariate analysis revealed that the lack of KIR2DS2 (p = 0.035), the presence of KIR2DL3 (p = 0.075), and the presence of KIR2DL2⁻HLA-C1 (p = 0.044) were risk factors for posttransplant CMV infection. We also found that a lower estimated glomerular filtration rate (p = 0.036), an earlier time of antiviral prophylaxis initiation (p = 0.025), lymphocytopenia (p = 0.012), and pretransplant serostatus (donor-positive/recipient-negative; p = 0.042) were independent risk factors for posttransplant CMV infection. In conclusion, our findings confirm that the KIR/HLA genotype plays a significant role in anti-CMV immunity and suggest the contribution of both environmental and genetic factors to the incidence of CMV infection after kidney transplantation

    A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology

    No full text
    The Banff Classification of Allograft Pathology is an international consensus classification for the reporting of biopsies from solid organ transplants. Since its initial conception in 1991 for renal transplants, it has undergone review every 2 years, with attendant updated publications. The rapid expansion of knowledge in the field has led to numerous revisions of the classification. The resultant dispersal of relevant content makes it difficult for novices and experienced pathologists to faithfully apply the classification in routine diagnostic work and in clinical trials. This review shall provide a complete and simple illustrated reference guide of the Banff Classification of Kidney Allograft Pathology based on all publications including the 2017 update. It is intended as a concise desktop reference for pathologists and clinicians, providing definitions, Banff Lesion Scores and Banff Diagnostic Categories. An online website reference guide hosted by the Banff Foundation for Allograft Pathology (www.banfffoundation.org) is being developed, which will be updated with future refinement of the Banff Classification from 2019 onward

    Coding practice in national and regional kidney biopsy registries

    No full text
    Background: Kidney biopsy registries all over the world benefit research, teaching and health policy. Comparison, aggregation and exchange of data is however greatly dependent on how registration and coding of kidney biopsy diagnoses are performed. This paper gives an overview over kidney biopsy registries, explores how these registries code kidney disease and identifies needs for improvement of coding practice. Methods: A literature search was undertaken to identify biopsy registries for medical kidney diseases. These data were supplemented with information from personal contacts and from registry websites. A questionnaire was sent to all identified registries, investigating age of registries, scope, method of coding, possible mapping to international terminologies as well as self-reported problems and suggestions for improvement. Results: Sixteen regional or national kidney biopsy registries were identified, of which 11 were older than 10 years. Most registries were located either in Europe (10/16) or in Asia (4/16). Registries most often use a proprietary coding system (12/16). Only a few of these coding systems were mapped to SNOMED CT (1), older SNOMED versions (2) or ERA-EDTA PRD (3). Lack of maintenance and updates of the coding system was the most commonly reported problem. Conclusions: There were large gaps in the global coverage of kidney biopsy registries. Limited use of international coding systems among existing registries hampers interoperability and exchange of data. The study underlines that the use of a common and uniform coding system is necessary to fully realize the potential of kidney biopsy registries
    corecore