373 research outputs found
Dieterici gas as a Unified Model for Dark Matter and Dark Energy
The dominance of dark energy in the universe has necessitated the
introduction of a repulsive gravity source to make q0 negative. The models for
dark energy range from a simple lambda-term to quintessence, Chaplygin gas,
etc. We look at the possibility of how change of behaviour of missing energy
density, from DM to DE, may be determined by the change in the equation of
state of a background fluid instead of a form of potential. The question of
cosmic acceleration can be discussed within the framework of theories which do
not necessarily include scalar fields.Comment: 9 pages, 38 equation
Penetration depth anisotropy in two-band superconductors
The anisotropy of the London penetration depth is evaluated for two-band
superconductors with arbitrary inter- and intra-band scattering times. If one
of the bands is clean and the other is dirty in the absence of inter-band
scattering, the anisotropy is dominated by the Fermi surface of the clean band
and is weakly temperature dependent. The inter-band scattering also suppress
the temperature dependence of the anisotropy
Self-energy and Self-force in the Space-time of a Thick Cosmic String
We calculate the self-energy and self-force for an electrically charged
particle at rest in the background of Gott-Hiscock cosmic string space-time. We
found the general expression for the self-energy which is expressed in terms of
the matrix of the scattering problem. The self-energy continuously falls
down outward from the string's center with maximum at the origin of the string.
The self-force is repulsive for an arbitrary position of the particle. It tends
to zero in the string's center and also far from the string and it has a
maximum value at the string's surface. The plots of the numerical calculations
of the self-energy and self-force are shown.Comment: 15 pages, 4 Postscript figures, ReVTe
Understanding the process of psychological development in youth athletes attending an intensive wrestling camp
This study used a grounded theory methodology to understand if and how psychological development in youth athletes was facilitated by an ‘intensive’ summer wrestling camp experience. The theoretical sampling approach involved 10 athlete participants of the camp, nine parents of athletes, the director of the camp, and four camp staff members, who took part in a series of interviews before, during, and after the camp. Two researchers were also embedded in the camp and attended all sessions, took detailed notes, collected camp materials, and conducted observations. Following a grounded theory analysis approach, a model is presented that outlines how youth participants’ developed psychological qualities from the coach created hallenges and adversity that were systematically designed to facilitate sport performance enhancement and life skills. Variations emerged in psychological antecedents and characteristics, how the challenging wrestling camp environment was interpreted and experienced, and how learning was transferred to sport and life domains outside of the wrestling camp. This study provided insight into a unique youth sport context that was able to simultaneously develop psychological qualities to be used as sport performance enhancement and life skills
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors
Quasiclassic Uzadel equations for two-band superconductors in the dirty limit
with the account of both intraband and interband scattering by nonmagnetic
impurities are derived for any anisotropic Fermi surface. From these equations
the Ginzburg-Landau equations, and the critical temperature are obtained.
An equation for the upper critical field, which determines both the temperature
dependence of and the orientational dependence of
as a function of the angle between and the c-axis is
obtained. It is shown that the shape of the curve essentially
depends on the ratio of the intraband electron diffusivities and ,
and can be very different from the standard one-gap dirty limit theory. In
particular, the value can considerably exceed ,
which can have important consequences for applications of . A scaling
relation is proposed which enables one to obtain the angular dependence of
from the equation for at . It is shown
that, depending on the relation between and , the ratio of the upper
critical field for and can both increase and decrease as the temperature decreases. Implications
of the obtained results for are discussed
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
The energy dependence of angular correlations inferred from mean- fluctuation scale dependence in heavy ion collisions at the SPS and RHIC
We present the first study of the energy dependence of angular
correlations inferred from event-wise mean transverse momentum
fluctuations in heavy ion collisions. We compare our large-acceptance
measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to
SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure
suggests that the principal source of $p_t$ correlations and fluctuations is
minijets (minimum-bias parton fragments). We observe a dramatic increase in
correlations and fluctuations from SPS to RHIC energies, increasing linearly
with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related
fluctuations near 10 GeV.Comment: 10 pages, 4 figure
Non-identical particle correlations in 130 and 200 AGeV collisions at STAR
STAR has performed a correlation analyses of pion-kaon and pion-proton pairs
for sqrt(s_NN)=130 AGeV and sqrt(s_NN)=200 AGeV and kaon-proton, proton-Lambda
and pion-Cascade pairs for AuAu collisions sqrt(s_NN)=200 AGeV. They show that
average emission space-time points of pions, kaons and protons are not the
same. These asymmetries are interpreted as a consequence of transverse radial
expansion of the system; emission time differences explain only part of the
asymmetry. Therefore our measurements independently confirm the existence of
transverse radial flow. Furthermore, correlations of strange hyperons is
investigated by performing proton-Lambda and pion-Cascade analyses, giving
estimates of source size at high m_{T}. The strong interaction potential
between (anti-)proton and lambda as well as kaon and proton is investigated.Comment: 5 pages, 3 figures, Quark Matter 04 proceedings, submitted to J.
Phys. G: Nucl. Phy
Measurement of open charm production in +Au collisions at =200 GeV
We present the first comprehensive measurement of and
their charge conjugate states at mid-rapidity in +Au collisions at
=200 GeV using the STAR TPC. The directly measured open charm
multiplicity distribution covers a broad transverse momentum region of
0 GeV/. The measured at mid-rapidity for is
and the measured
and ratios are approximately equal with a magnitude of . The total cross section per
nucleon-nucleon collision extracted from this study is mb. The direct measurement of open charm production is
consistent with STAR single electron data. This cross section is higher than
expectations from PYTHIA and other pQCD calculations. The measured
distribution is harder than the pQCD prediction using the Peterson
fragmentation function.Comment: Quark Matter 2004 Proceeding
- …
