302 research outputs found
FARMERSâ MARKET SHOPPING BEHAVIORS AND THE ASSOCIATION OF FRUIT AND VEGETABLE INTAKE
Fruit and vegetable (FV) intake continues to decline among sub-population in the United States. Current policies and interventions have aimed to improve intake by improving access to fruits and vegetables. One Centers for Disease Control and Prevention suggested strategy is to improve access to farmersâ markets in rural areas. The aims of this study were to determine if the frequency of shopping at Farmersâ Markets is associated with fruit and vegetable intake, adjusted for age, income and education and to compare rural and non-rural areas frequency of Farmersâ Market attendance based on Kentucky farmersâ market interview participants (n = 102). The results of the descriptive, cross-sectional study determined that the Kentucky farmersâ market customers Fruit and Vegetable Score was positively associated with frequency of purchase of locally grown fruits and vegetables at farmersâ markets. However, the frequency of farmersâ market attendance was most commonly limited to âonce a weekâ (as a result of participants attending âOnly attends market when need somethingâ). It was concluded that alleviating the barriers customers face to use farmersâ markets is the best way to increase the attendance of farmersâ markets and as a result increase the purchases of fresh fruits and vegetables
Predicting hedgehog mortality risks on British roads using habitat suitability modelling
Road vehicle collisions are likely to be an important contributory factor in the decline of the European hedgehog (Erinaceus europaeus) in Britain. Here, a collaborative roadkill dataset collected from multiple projects across Britain was used to assess when, where and why hedgehog roadkill are more likely to occur. Seasonal trends were assessed using a Generalized Additive Model. There were few casualties in winterâthe hibernation season for hedgehogsâwith a gradual increase from February that reached a peak in July before declining thereafter. A sequential multi-level Habitat Suitability Modelling (HSM) framework was then used to identify areas showing a high probability of hedgehog roadkill occurrence throughout the entire British road network (âŒ400,000 km) based on multi-scale environmental determinants. The HSM predicted that grassland and urban habitat coverage were important in predicting the probability of roadkill at a national scale. Probabilities peaked at approximately 50% urban cover at a one km scale and increased linearly with grassland cover (improved and rough grassland). Areas predicted to experience high probabilities of hedgehog roadkill occurrence were therefore in urban and suburban environments, that is, where a mix of urban and grassland habitats occur. These areas covered 9% of the total British road network. In combination with information on the frequency with which particular locations have hedgehog road casualties, the framework can help to identify priority areas for mitigation measures
Projected marine heatwaves in the 21st century and the potential for ecological impact
Marine heatwaves (MHWs) are extreme climatic events in oceanic systems that can have devastating impacts on ecosystems, causing abrupt ecological changes and socioeconomic consequences. Several prominent MHWs have attracted scientific and public interest, and recent assessments have documented global and regional increases in their frequency. However, for proactive marine management, it is critical to understand how patterns might change in the future. Here, we estimate future changes in MHWs to the end of the 21st century, as simulated by the CMIP5 global climate model projections. Significant increases in MHW intensity and count of annual MHW days are projected to accelerate, with many parts of the ocean reaching a near-permanent MHW state by the late 21st century. The two greenhouse gas (GHG) emission scenarios considered (Representative Concentration Pathway 4.5 and 8.5) strongly affect the projected intensity of MHW events, the proportion of the globe exposed to permanent MHW states, and the occurrence of the most extreme MHW events. Comparison with simulations of a natural world, without anthropogenic forcing, indicate that these trends have emerged from the expected range of natural variability within the first half of the 21st century. This discrepancy implies a degree of âanthropogenic emergence,â with a departure from the natural MHW conditions that have previously shaped marine ecosystems for centuries or even millennia. Based on these projections we expect impacts on marine ecosystems to be widespread, significant and persistent through the 21st century.This research was supported by the Australian Research Council grants CE170100023 and FT170100106, Natural Environment Research Council International Opportunity Fund NE/N00678X/1, National Sciences and Engineering Research Council of Canada Discovery Grant RGPIN-2018-05255, and Brian Mason (Impacts of an unprecedented marine heatwave). This project was partially supported through funding from the Earth Systems and Climate Change Hub of the Australian Governmentâs National Environmental Science Program.Peer ReviewedPostprint (published version
A hierarchical approach to defining marine heatwaves
Marine heatwaves (MHWs) have been observed around the world and are expected to increase in intensity and frequency under anthropogenic climate change. A variety of impacts have been associated with these anomalous events, including shifts in species ranges, local extinctions and economic impacts on seafood industries through declines in important fishery species and impacts on aquaculture. Extreme temperatures are increasingly seen as important influences on biological systems, yet a consistent definition of MHWs does not exist. A clear definition will facilitate retrospective comparisons between MHWs, enabling the synthesis and a mechanistic understanding of the role of MHWs in marine ecosystems. Building on research into atmospheric heatwaves, we propose both a general and specific definition for MHWs, based on a hierarchy of metrics that allow for different data sets to be used in identifying MHWs. We generally define a MHW as a prolonged discrete anomalously warm water event that can be described by its duration, intensity, rate of evolution, and spatial extent. Specifically, we consider an anomalously warm event to be a MHW if it lasts for five or more days, with temperatures warmer than the 90th percentile based on a 30-year historical baseline period. This structure provides flexibility with regard to the description of MHWs and transparency in communicating MHWs to a general audience. The use of these metrics is illustrated for three 21st century MHWs; the northern Mediterranean event in 2003, the Western Australia âNingaloo Niñoâ in 2011, and the northwest Atlantic event in 2012. We recommend a specific quantitative definition for MHWs to facilitate global comparisons and to advance our understanding of these phenomena
Recommended from our members
Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): Architecture
We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative âappsâ to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components
Longer and more frequent marine heatwaves over the past century
Heatwaves are important climatic extremes in atmospheric and oceanic systems that can have devastating and long-term impacts on ecosystems, with subsequent socioeconomic consequences. Recent prominent marine heatwaves have attracted considerable scientific and public interest. Despite this, a comprehensive assessment of how these ocean temperature extremes have been changing globally is missing. Using a range of ocean temperature data including global records of daily satellite observations, daily in situ measurements and gridded monthly in situ-based data sets, we identify significant increases in marine heatwaves over the past century. We find that from 1925 to 2016, global average marine heatwave frequency and duration increased by 34% and 17%, respectively, resulting in a 54% increase in annual marine heatwave days globally. Importantly, these trends can largely be explained by increases in mean ocean temperatures, suggesting that we can expect further increases in marine heatwave days under continued global warming
Targeted glycoproteomic identification of cancer cell glycosylation
GalMBP is a fragment of serum mannose-binding protein that has been modified to create a probe for galactose-containing ligands. Glycan array screening demonstrated that the carbohydrate-recognition domain of GalMBP selectively binds common groups of tumor-associated glycans, including Lewis-type structures and T antigen, suggesting that engineered glycan-binding proteins such as GalMBP represent novel tools for the characterization of glycoproteins bearing tumor-associated glycans. Blotting of cell extracts and membranes from MCF7 breast cancer cells with radiolabeled GalMBP was used to demonstrate that it binds to a selected set of high molecular weight glycoproteins that could be purified from MCF7 cells on an affinity column constructed with GalMBP. Proteomic and glycomic analysis of these glycoproteins by mass spectrometry showed that they are forms of CD98hc that bear glycans displaying heavily fucosylated termini, including Lewisx and Lewisy structures. The pool of ligands was found to include the target ligands for anti-CD15 antibodies, which are commonly used to detect Lewisx antigen on tumors, and for the endothelial scavenger receptor C-type lectin, which may be involved in tumor metastasis through interactions with this antigen. A survey of additional breast cancer cell lines reveals that there is wide variation in the types of glycosylation that lead to binding of GalMBP. Higher levels of binding are associated either with the presence of outer-arm fucosylated structures carried on a variety of different cell surface glycoproteins or with the presence of high levels of the mucin MUC1 bearing T antigen
Interpretation of river water quality data is strongly controlled by measurement time and frequency
Water quality monitoring at high temporal frequency provides a detailed picture of environmental stressors and ecosystem response, which is essential to protect and restore lake and river health. An effective monitoring network requires knowledge on optimal monitoring frequency and data variability. Here, high-frequency hydrochemical datasets (dissolved oxygen, pH, electrical conductivity, turbidity, water temperature, total reactive phosphorus, total phosphorus and nitrate) from six UK catchments were analysed to 1) understand the lowest measurement frequency needed to fully capture the variation in the datasets; and 2) investigate bias caused by sampling at different times of the day. The study found that reducing the measurement frequency increasingly changed the interpretation of the data by altering the calculated median and data range. From 45 individual parameter-catchment combinations (six to eight parameters in six catchments), four-hourly data captured most of the hourly range (>90âŻ%) for 37 combinations, whilst 41 had limited impact on the median (90âŻ% of the range with limited impact on the median in approximately half of the combinations, whereas weekly and monthly data captured this in <6 combinations. Generally, reducing sampling frequency had most impact on the median for parameters showing strong diurnal cycles, whilst parameters showing rapid responses to extreme flow conditions had most impact on the range. Diurnal cycles resulted in year-round intra-daily variation in most of the parameters, apart from nutrient concentrations, where daily variation depended on both seasonal flow patterns and anthropogenic influences. To design an optimised monitoring programme, key catchment characteristics and required data resolution for the monitoring purpose should be considered. Ideally a pilot study with high-frequency monitoring, at least four-hourly, should be used to determine the minimum frequency regime needed to capture temporal behaviours in the intended focus water quality parameters by revealing their biogeochemical response patterns
- âŠ