1,351 research outputs found
Knowledge of regulation of photosynthesis in outdoor microalgae cultures is essential for the optimization of biomass productivity
Microalgae represent a sustainable source of biomass that can be exploited for pharmaceutical, nutraceutical, cosmetic applications, as well as for food, feed, chemicals, and energy. To make microalgae applications economically competitive and maximize their positive environmental impact, it is however necessary to optimize productivity when cultivated at a large scale. Independently from the final product, this objective requires the optimization of biomass productivity and thus of microalgae ability to exploit light for CO2 fixation. Light is a highly variable environmental parameter, continuously changing depending on seasons, time of the day, and weather conditions. In microalgae large scale cultures, cell self-shading causes inhomogeneity in light distribution and, because of mixing, cells move between different parts of the culture, experiencing abrupt changes in light exposure. Microalgae evolved multiple regulatory mechanisms to deal with dynamic light conditions that, however, are not adapted to respond to the complex mixture of natural and artificial fluctuations found in large-scale cultures, which can thus drive to oversaturation of the photosynthetic machinery, leading to consequent oxidative stress. In this work, the present knowledge on the regulation of photosynthesis and its implications for the maximization of microalgae biomass productivity are discussed. Fast mechanisms of regulations, such as Non-Photochemical-Quenching and cyclic electron flow, are seminal to respond to sudden fluctuations of light intensity. However, they are less effective especially in the 1–100 s time range, where light fluctuations were shown to have the strongest negative impact on biomass productivity. On the longer term, microalgae modulate the composition and activity of the photosynthetic apparatus to environmental conditions, an acclimation response activated also in cultures outdoors. While regulation of photosynthesis has been investigated mainly in controlled lab-scale conditions so far, these mechanisms are highly impactful also in cultures outdoors, suggesting that the integration of detailed knowledge from microalgae large-scale cultivation is essential to drive more effective efforts to optimize biomass productivity
Recommended from our members
Assessing the Graphical Perception of Time and Speed on 2D+Time Trajectories
We empirically evaluate the extent to which people perceive non-constant time and speed encoded on 2D paths. In our graphical perception study, we evaluate nine encodings from the literature for both straight and curved paths. Visualizing time and speed information is a challenge when the x and y axes already encode other data dimensions, for example when plotting a trip on a map. This is particularly true in disciplines such as time-geography and movement analytics that often require visualizing spatio-temporal trajectories. A common approach is to use 2D+time trajectories, which are 2D paths for which time is an additional dimension. However, there are currently no guidelines regarding how to represent time and speed on such paths. Our study results provide InfoVis designers with clear guidance regarding which encodings to use and which ones to avoid; in particular, we suggest using color value to encode speed and segment length to encode time whenever possible
Recommended from our members
Exploration Strategies for Discovery of Interactivity in Visualizations
We investigate how people discover the functionality of an interactive visualization that was designed for the general public. While interactive visualizations are increasingly available for public use, we still know little about how the general public discovers what they can do with these visualizations and what interactions are available. Developing a better understanding of this discovery process can help inform the design of visualizations for the general public, which in turn can help make data more accessible. To unpack this problem, we conducted a lab study in which participants were free to use their own methods to discover the functionality of a connected set of interactive visualizations of public energy data. We collected eye movement data and interaction logs as well as video and audio recordings. By analyzing this combined data, we extract exploration strategies that the participants employed to discover the functionality in these interactive visualizations. These exploration strategies illuminate possible design directions for improving the discoverability of a visualization's functionality
Recommended from our members
Active Reading of Visualizations
We investigate whether the notion of active reading for text might be usefully applied to visualizations. Through a qualitative study we explored whether people apply observable active reading techniques when reading paper-based node-link visualizations. Participants used a range of physical actions while reading, and from these we synthesized an initial set of active reading techniques for visualizations. To learn more about the potential impact such techniques may have on visualization reading, we implemented support for one type of physical action from our observations (making freeform marks) in an interactive node-link visualization. Results from our quantitative study of this implementation show that interactive support for active reading techniques can improve the accuracy of performing low-level visualization tasks. Together, our studies suggest that the active reading space is ripe for research exploration within visualization and can lead to new interactions that make for a more flexible and effective visualization reading experience
Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production
Background The productivity of an algal culture depends on how efficiently it converts sunlight into biomass and lipids. Wild-type algae in their natural environment evolved to compete for light energy and maximize individual cell growth; however, in a photobioreactor, global productivity should be maximized. Improving light use efficiency is one of the primary aims of algae biotechnological research, and genetic engineering can play a major role in attaining this goal. Results In this work, we generated a collection of Nannochloropsis gaditana mutant strains and screened them for alterations in the photosynthetic apparatus. The selected mutant strains exhibited diverse phenotypes, some of which are potentially beneficial under the specific artificial conditions of a photobioreactor. Particular attention was given to strains showing reduced cellular pigment contents, and further characterization revealed that some of the selected strains exhibited improved photosynthetic activity; in at least one case, this trait corresponded to improved biomass productivity in lab-scale cultures. Conclusions This work demonstrates that genetic modification of N. gaditana has the potential to generate strains with improved biomass productivity when cultivated under the artificial conditions of a photobioreactor
Palladium(II)-η3-Allyl Complexes Bearing N-Trifluoromethyl N-Heterocyclic Carbenes: A New Generation of Anticancer Agents that Restrain the Growth of High-Grade Serous Ovarian Cancer Tumoroids
The first palladium organometallic compounds bearing N-trifluoromethyl N-heterocyclic carbenes have been synthesized. These η3-allyl complexes are potent antiproliferative agents against different cancer lines (for the most part, IC50 values fall in the range 0.02–0.5 μm). By choosing 1,3,5-triaza-7-phosphaadamantane (PTA) as co-ligand, we can improve the selectivity toward tumor cells, whereas the introduction of 2-methyl substituents generally reduces the antitumor activity slightly. A series of biochemical assays, aimed at defining the cellular targets of these palladium complexes, has shown that mitochondria are damaged before DNA, thus revealing a behavior substantially different from that of cisplatin and its derivatives. We assume that the specific mechanism of action of these organometallic compounds involves nucleophilic attack on the η3-allyl fragment. The effectiveness of a representative complex, 4 c, was verified on ovarian cancer tumoroids derived from patients. The results are promising: unlike carboplatin, our compound turned out to be very active and showed a low toxicity toward normal liver organoids
Polyphasic characterization of gluconacetobacter diazotrophicus isolates obtained from different sugarcane varieties
Parceria: UFRJ; UFRRJ; UENF
Risk Factors for Diarrhea in Children Under Five Years of Age Residing in Peri-Urban Communities in Cochabamba, Bolivia
This study examined the relationship between childhood diarrhea prevalence and caregiver knowledge of the causes and prevention of diarrhea in a prospective cohort of 952 children \u3c 5 years of age in Cochabamba, Bolivia. The survey of caregiver knowledge found that more than 80% of caregivers were unaware that hand washing with soap could prevent childhood diarrhea. Furthermore, when asked how to keep food safe for children to eat only 17% of caregivers reported hand washing before cooking and feeding a child. Lack of caregiver awareness of the importance of practices related to hygiene and sanitation for diarrhea prevention were significant risk factors for diarrheal disease in this cohort. The knowledge findings from this study suggest that health promotion in these communities should put further emphasis on increasing knowledge of how water treatment, hand washing with soap, proper disposal of child feces, and food preparation relate to childhood diarrhea prevention
Enhanced activity of a pluronic F127 formulated Pin1 inhibitor for ovarian cancer therapy
Enhanced activity of a pluronic F127 formulated Pin1 inhibitor for ovarian cancer therap
- …