136 research outputs found

    Structural basis for the homotypic fusion of chlamydial inclusions by the SNARE-like protein IncA.

    Get PDF
    Many intracellular bacteria, including Chlamydia, establish a parasitic membrane-bound organelle inside the host cell that is essential for the bacteria\u27s survival. Chlamydia trachomatis forms inclusions that are decorated with poorly characterized membrane proteins known as Incs. The prototypical Inc, called IncA, enhances Chlamydia pathogenicity by promoting the homotypic fusion of inclusions and shares structural and functional similarity to eukaryotic SNAREs. Here, we present the atomic structure of the cytoplasmic domain of IncA, which reveals a non-canonical four-helix bundle. Structure-based mutagenesis, molecular dynamics simulation, and functional cellular assays identify an intramolecular clamp that is essential for IncA-mediated homotypic membrane fusion during infection

    Ictal propagation of high frequency activity is recapitulated in interictal recordings: effective connectivity of epileptogenic networks recorded with intracranial EEG

    Get PDF
    Seizures are increasingly understood to arise from epileptogenic networks across which ictal activity is propagated and sustained. In patients undergoing invasive monitoring for epilepsy surgery, high frequency oscillations have been observed within the seizure onset zone during both ictal and interictal intervals. We hypothesized that the patterns by which high frequency activity is propagated would help elucidate epileptogenic networks and thereby identify network nodes relevant for surgical planning. Intracranial EEG recordings were analyzed with a multivariate autoregressive modeling technique (short-time direct directed transfer function--SdDTF), based on the concept of Granger causality, to estimate the directionality and intensity of propagation of high frequency activity (70-175 Hz) during ictal and interictal recordings. These analyses revealed prominent divergence and convergence of high frequency activity propagation at sites identified by epileptologists as part of the ictal onset zone. In contrast, relatively little propagation of this activity was observed among the other analyzed sites. This pattern was observed in both subdural and depth electrode recordings of patients with focal ictal onset, but not in patients with a widely distributed ictal onset. In patients with focal ictal onsets, the patterns of propagation recorded during pre-ictal (up to 5 min immediately preceding ictal onset) and interictal (more than 24h before and after seizures) intervals were very similar to those recorded during seizures. The ability to characterize epileptogenic networks from interictal recordings could have important clinical implications for epilepsy surgery planning by reducing the need for prolonged invasive monitoring to record spontaneous seizures

    Establishing LA VIDA: A Community-Based Partnership to Prevent Intimate Violence against Latina Women

    Full text link
    LA VIDA—the Southwest Detroit Partnership to Prevent Intimate Violence Against Latina Women— evolved in response to community concern about the problem of intimate partner violence (IPV) and the lack of culturally competent preventive and support services for Latino women and men in southwest Detroit. Since 1997, diverse organizations have mobilized as a community-academic partnership to ensure the availability, accessibility, and utilization of IPV services. This article describes and analyzes the evolution of LA VIDA within a community-based participatory research framework using a case study approach that draws on multiple data sources including group and individual interviews and field notes. The challenges and lessons learned in addressing a complex multifaceted problem such as IPV in an ethnic minority community are highlighted in an examination of the process of mobilizing diverse organizations, conducting community diagnosis and needs assessment activities, establishing goals and objectives within a social ecological framework, and integrating evaluation during the development phase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66991/2/10.1177_109019819902600606.pd

    Prolonged exposure for the treatment of Spanish-speaking Puerto Ricans with posttraumatic stress disorder: a feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most of the empirical studies that support the efficacy of prolonged exposure (PE) for treating posttraumatic stress disorder (PTSD) have been conducted on white mainstream English-speaking populations. Although high PTSD rates have been reported for Puerto Ricans, the appropriateness of PE for this population remains unclear. The purpose of this study was to examine the feasibility of providing PE to Spanish speaking Puerto Ricans with PTSD. Particular attention was also focused on identifying challenges faced by clinicians with limited experience in PE. This information is relevant to help inform practice implications for training Spanish-speaking clinicians in PE.</p> <p>Results</p> <p>Fourteen patients with PTSD were randomly assigned to receive PE (n = 7) or usual care (UC) (n = 7). PE therapy consisted of 15 weekly sessions focused on gradually confronting and emotionally processing distressing trauma-related memories and reminders. Five patients completed PE treatment; all patients attended the 15 sessions available to them. In UC, patients received mental health services available within the health care setting where they were recruited. They also had the option of self-referring to a mental health provider outside the study setting. The Clinician-Administered PTSD Scale (CAPS) was administered at baseline, mid-treatment, and post-treatment to assess PTSD symptom severity. Treatment completers in the PE group demonstrated significantly greater reductions in PTSD symptoms than the UC group. Forty percent of the PE patients showed clinically meaningful reductions in PTSD symptoms from pre- to post-treatment.</p> <p>Conclusions</p> <p>PE appears to be viable for treating Puerto Rican Spanish-speaking patients with PTSD. This therapy had good patient acceptability and led to improvements in PTSD symptoms. Attention to the clinicians' training process contributed strongly to helping them overcome the challenges posed by the intervention and increased their acceptance of PE.</p

    Short-Term Hurricane Impacts on a Neotropical Community of Marked Birds and Implications for Early-Stage Community Resilience

    Get PDF
    Populations in fragmented ecosystems risk extirpation through natural disasters, which must be endured rather than avoided. Managing communities for resilience is thus critical, but details are sketchy about the capacity for resilience and its associated properties in vertebrate communities. We studied short-term resilience in a community of individually marked birds, following this community through the catastrophic destruction of its forest habitat by Hurricane Iris in Belize, Central America. We sampled for 58 d immediately before the storm, 28 d beginning 11 d after Hurricane Iris, and for 69 d approximately one year later. Our data showed that the initial capacity for resilience was strong. Many banded individuals remained after the storm, although lower post-hurricane recapture rates revealed increased turnover among individuals. Changes occurred in community dynamics and in abundances among species and guilds. Survivors and immigrants both were critical components of resilience, but in a heterogeneous, species-specific manner. Delayed effects, including higher fat storage and increased species losses, were evident one year later

    A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type

    Full text link
    [EN] All variables affecting the morphology of mesoporous silica nanoparticles (MSN) should be carefully analyzed in order to truly tailored design their mesoporous structure according to their final use. Although complete control on MCM-41 synthesis has been already claimed, reproducibility and repeatability of results remain a big issue due to the lack of information reported in literature. Stirring rate, reaction volume, and system configuration (i.e., opened or closed reactor) are three variables that are usually omitted, making the comparison of product characteristics difficult. Specifically, the rate of solvent evaporation is seldom disclosed, and its influence has not been previously analyzed. These variables were systematically studied in this work, and they were proven to have a fundamental impact on final particle morphology. Hence, a high degree of circularity (C = 0.97) and monodispersed particle size distributions were only achieved when a stirring speed of 500 rpm and a reaction scale of 500 mL were used in a partially opened system, for a 2 h reaction at 80 degrees C. Well-shaped spherical mesoporous silica nanoparticles with a diameter of 95 nm, a pore size of 2.8 nm, and a total surface area of 954 m(2) g(-1) were obtained. Final characteristics made this product suitable to be used in biomedicine and nanopharmaceutics, especially for the design of drug delivery systems.This study was funded partially by Departamento Administrativo de Ciencia Tecnología e Innovación–COLCIENCIAS (recipient, Angela A. Beltrán-Osuna); Ministerio de Economía y Competitividad, MINECO, research number MAT2016-76039-C4-1-R (Recipient, José L. Gómez-Ribelles); and Universidad Nacional de Colombia, grant number DIB201010021438 (Recipient, Jairo E. Perilla).Beltrán-Osuna, A.; Gómez Ribelles, JL.; Perilla-Perilla, JE. (2017). A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type. Journal of Nanoparticle Research. 19(12):1-14. https://doi.org/10.1007/s11051-017-4077-2S1141912Barrabino A (2011) Synthesis of mesoporous silica particles with control of both pore diameter and particle size. Master Thesis, Chalmers University of Technology, SwedenBastos FS, Lima OA, Filho CR, Fernandes LD (2011) Mesoporous molecular sieve MCM-41 synthesis from fluoride media. Brazilian. J Chem Eng 28:649–658Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843. https://doi.org/10.1021/ja00053a020Beltrán-Osuna AA, Perilla JE (2016) Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. J Sol-Gel Sci Technol 77(2):480–496. https://doi.org/10.1007/s10971-015-3874-2Bernardos A, Mondragón L, Aznar E et al (2010) Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 4(11):6353–6368. https://doi.org/10.1021/nn101499dBharti C, Nagaich U, Pal AK, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124–133. https://doi.org/10.4103/2230-973X.160844Brevet D, Hocine O, Delalande A, Raehm L, Charnay C, Midoux P, Durand JO, Pichon C (2014) Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles. Int J Pharm 471(1-2):197–205. https://doi.org/10.1016/j.ijpharm.2014.05.020Cai Q, Luo Z, Pang W et al (2001) Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem Mater 13(2):258–263. https://doi.org/10.1021/cm990661zChakraborty I, Mascharak PK (2016) Mesoporous silica materials and nanoparticles as carriers for controlled and site-specific delivery of gaseous signaling molecules. Microporous Mesoporous Mater 234:409–419. https://doi.org/10.1016/j.micromeso.2016.07.028Chen L, Zhang Z, Yao X, Chen X, Chen X (2015a) Intracellular pH-operated mechanized mesoporous silica nanoparticles as potential drug carries. Microporous Mesoporous Mater 201:169–175. https://doi.org/10.1016/j.micromeso.2014.09.023Chen X, Yao X, Wang C, Chen L, Chen X (2015b) Mesoporous silica nanoparticles capped with fluorescence-conjugated cyclodextrin for pH-activated controlled drug delivery and imaging. Microporous Mesoporous Mater 217:46–53. https://doi.org/10.1016/j.micromeso.2015.06.012Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic / therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25(23):3144–3176. https://doi.org/10.1002/adma.201205292Chen Y, Shi X, Han B, Qin H, Li Z, Lu Y, Wang J, Kong Y (2012) The complete control for the nanosize of spherical MCM-41. J Nanosci Nanotechnol 12(9):7239–7249. https://doi.org/10.1166/jnn.2012.6459Cheng Y-J, Zeng X, Cheng D-B, Xu XD, Zhang XZ, Zhuo RX, He F (2016) Functional mesoporous silica nanoparticles (MSNs) for highly controllable drug release and synergistic therapy. Colloids Surfaces B Biointerfaces 145:217–225. https://doi.org/10.1016/j.colsurfb.2016.04.051Crommelin DJA, Florence AT (2013) Towards more effective advanced drug delivery systems. Int J Pharm 454(1):496–511. https://doi.org/10.1016/j.ijpharm.2013.02.020Edler KJ (1997) Synthesis and characterisation of the mesoporous molecular sieve, MCM-41. Doctoral dissertation, The Australian National University, AustraliaGuo Z, Liu X-M, Ma L, Li J, Zhang H, Gao YP, Yuan Y (2013) Effects of particle morphology, pore size and surface coating of mesoporous silica on naproxen dissolution rate enhancement. Colloids Surf B Biointerfaces 101:228–235. https://doi.org/10.1016/j.colsurfb.2012.06.026Han N, Wang Y, Bai J, Liu J, Wang Y, Gao Y, Jiang T, Kang W, Wang S (2016) Facile synthesis of the lipid bilayer coated mesoporous silica nanocomposites and their application in drug delivery. Microporous Mesoporous Mater 219:209–218. https://doi.org/10.1016/j.micromeso.2015.08.006Hu X, Wang Y, Peng B (2014) Chitosan-capped mesoporous silica nanoparticles as pH-responsive nanocarriers for controlled drug release. Chem - An Asian J 9(1):319–327. https://doi.org/10.1002/asia.201301105Huh S, Wiench JW, Yoo J et al (2003) Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem Mater 15(22):4247–4256. https://doi.org/10.1021/cm0210041Ikari K, Suzuki K, Imai H (2006) Structural control of mesoporous silica nanoparticles in a binary surfactant system. Langmuir 22(2):802–806. https://doi.org/10.1021/la0525527Iliade P, Miletto I, Coluccia S, Berlier G (2012) Functionalization of mesoporous MCM-41 with aminopropyl groups by co-condensation and grafting: a physico-chemical characterization. Res Chem Intermed 38(3-5):785–794. https://doi.org/10.1007/s11164-011-0417-5IUPAC (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619IUPAC (2014) Compendium of chemical terminology-gold book, 2.3.3. International Union of Pure and Applied ChemistryKhezri K, Roghani-Mamaqani H, Sarsabili M, Sobani M, Mirshafiei-Langari SA (2014) Spherical mesoporous silica nanoparticles/tailor-made polystyrene nanocomposites by in situ reverse atom transfer radical polymerization. Polym Sci Ser B 56(6):909–918. https://doi.org/10.1134/S1560090414660026Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712. https://doi.org/10.1038/359710a0Lelong G, Bhattacharyya S, Kline S, Cacciaguerra T, Gonzalez MA, Saboungi ML (2008) Effect of surfactant concentration on the morphology and texture of MCM-41 materials. J Phys Chem C 112(29):10674–10680. https://doi.org/10.1021/jp800898nLv X, Zhang L, Xing F, Lin H (2016) Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater 225:238–244. https://doi.org/10.1016/j.micromeso.2015.12.024Mamaeva V, Sahlgren C, Lindén M (2013) Mesoporous silica nanoparticles in medicine: recent advances. Adv Drug Deliv Rev 65(5):689–702. https://doi.org/10.1016/j.addr.2012.07.018Manzano M, Aina V, Areán CO, Balas F, Cauda V, Colilla M, Delgado MR, Vallet-Regí M (2008) Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J 137(1):30–37. https://doi.org/10.1016/j.cej.2007.07.078Merkus HG (2009) Particle size measurements: fundamentals, practice, quality. Springer Science +Businees Media B.V, The NetherlandsMorishige K, Fujii H, Uga M, Kinukawa D (1997) Capillary critical point of argon, nitrogen, oxygen, ethylene, and carbon dioxide in MCM-41. Langmuir 13(13):3494–3498. https://doi.org/10.1021/la970079ude Padua Oliveira DC, de Barros ALB, Belardi RM et al (2016) Mesoporous silica nanoparticles as a potential vaccine adjuvant against Schistosoma mansoni. J Drug Deliv Sci Technol 35:234–240. https://doi.org/10.1016/j.jddst.2016.07.002Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gonen M, Kalaigian H, Schoder H, Strauss HW, Larson SM, Wiesner U, Bradbury MS (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149. https://doi.org/10.1126/scitranslmed.3009524Qu F, Zhu G, Lin H, Zhang W, Sun J, Li S, Qiu S (2006) A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials. J Solid State Chem 179(7):2027–2035. https://doi.org/10.1016/j.jssc.2006.04.002Rafi AA, Mahkam M, Davaran S, Hamishehkar H (2016) A smart pH-responsive nano-carrier as a drug delivery system: a hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): preparation, characterization and in vitro releas. Eur J Pharm Sci 93:64–73. https://doi.org/10.1016/j.ejps.2016.08.005Rouquerol J, Rouquerol F, Llewellyn P, et al (2014) Adsorption by powders and porous solids: principles, methodology and applications. Elsevier Ltd.Selvam P, Bhatia SK, Sonwane CG (2001) Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Ind Eng Chem Res 40(15):3237–3261. https://doi.org/10.1021/ie0010666Shi YT, Cheng HY, Geng Y, Nan HM, Chen W, Cai Q, Chen BH, Sun XD, Yao YW, Li HD (2010) The size-controllable synthesis of nanometer-sized mesoporous silica in extremely dilute surfactant solution. Mater Chem Phys 120(1):193–198. https://doi.org/10.1016/j.matchemphys.2009.10.045Shibata H, Chiba Y, Kineri T, Matsumoto M, Nishio K (2010) The effect of heat treatment on the interplanar spacing of the mesostructure during the synthesis of mesoporous MCM-41 silica. Colloids Surfaces A Physicochem Eng Asp 358(1-3):1–5. https://doi.org/10.1016/j.colsurfa.2009.12.020Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. https://doi.org/10.1016/j.addr.2008.03.012Sun R, Wang W, Wen Y, Zhang X (2015) Recent advance on mesoporous silica nanoparticles-based controlled release system: intelligent switches open up. Nano 5(4):2019–2053. https://doi.org/10.3390/nano5042019U.S. Department of Health & Human Services (2015) Cancer Nanotechnology PlanUkmar T, Maver U, Planinšek O, Kaučič V, Gaberšček M, Godec A (2011) Understanding controlled drug release from mesoporous silicates: theory and experiment. J Control Release 155(3):409–417. https://doi.org/10.1016/j.jconrel.2011.06.038Vallet-Regi M, Arcos Navarrete D (2016) Nanoceramics in clinical use, 1st edn. The Royal Society of Chemistry, CambridgeVallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311. https://doi.org/10.1021/cm0011559Varga N, Benko M, Sebok D et al (2015) Mesoporous silica core-shell composite functionalized with polyelectrolytes for drug delivery. Microporous Mesoporous Mater 213:134–141. https://doi.org/10.1016/j.micromeso.2015.02.008Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotechnol Biol Med 11(2):313–327. https://doi.org/10.1016/j.nano.2014.09.014Wanyika H, Gatebe E, Kioni P et al (2011) Synthesis and characterization of ordered mesoporous silica nanoparticles with tunable physical properties by varying molar composition of reagents. African J Pharm Pharmacol 5(21):2402–2410. https://doi.org/10.5897/AJPP11.592Wu SH, Mou CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875. https://doi.org/10.1039/c3cs35405aXu X, Lü S, Gao C, Wang X, Bai X, Gao N, Liu M (2015a) Facile preparation of pH-sensitive and self-fluorescent mesoporous silica nanoparticles modified with PAMAM dendrimers for label-free imaging and drug delivery. Chem Eng J 266:171–178. https://doi.org/10.1016/j.cej.2014.12.075Xu X, Lü S, Gao C, Wang X, Bai X, Duan H, Gao N, Feng C, Liu M (2015b) Polymeric micelle-coated mesop orous silica nanoparticle for enhanced fluorescent imaging and pH-responsive drug delivery. Chem Eng J 279:851–860. https://doi.org/10.1016/j.cej.2015.05.085Xu X, Lü S, Gao C, Feng C, Wu C, Bai X, Gao N, Wang Z, Liu M (2016) Self-fluorescent and stimuli-responsive mesoporous silica nanoparticles using a double-role curcumin gatekeeper for drug delivery. Chem Eng J 300:185–192. https://doi.org/10.1016/j.cej.2016.04.087Yang Y, Yu C (2015) Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine nanotechnology. Biol Med 12(2):317–332. https://doi.org/10.1016/j.nano.2015.10.018Zhang H, Tong C, Sha J, Liu B, Lü C (2015) Fluorescent mesoporous silica nanoparticles functionalized graphene oxide: a facile FRET-based ratiometric probe for Hg2+. Sensors Actuators B Chem 206:181–189. https://doi.org/10.1016/j.snb.2014.09.051Zhou C, Yan C, Zhao J, Wang H, Zhou Q, Luo W (2016) Rapid synthesis of morphology-controlled mesoporous silica nanoparticles from silica fume. J Taiwan Inst Chem Eng 62:307–312. https://doi.org/10.1016/j.jtice.2016.01.03

    Exploring the Conformational Transitions of Biomolecular Systems Using a Simple Two-State Anisotropic Network Model

    Get PDF
    Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results. © 2014 Das et al

    Structural insight into the formation of lipoprotein-β-barrel complexes

    Get PDF
    The β-barrel assembly machinery (BAM) inserts outer membrane β-barrel proteins (OMPs) in the outer membrane of Gram-negative bacteria. In Enterobacteriacea, BAM also mediates export of the stress sensor lipoprotein RcsF to the cell surface by assembling RcsF–OMP complexes. Here, we report the crystal structure of the key BAM component BamA in complex with RcsF. BamA adopts an inward-open conformation, with the lateral gate to the membrane closed. RcsF is lodged deep within the lumen of the BamA barrel, binding regions proposed to undergo outward and lateral opening during OMP insertion. On the basis of our structural and biochemical data, we propose a push-and-pull model for RcsF export following conformational cycling of BamA, and provide a mechanistic explanation for how RcsF uses its interaction with BamA to detect envelope stress. Our data also suggest that the flux of incoming OMP substrates is involved in the control of BAM activity

    Self-balancing control strategy for a battery based H-bridge multilevel inverter

    No full text
    This paper presents a novel control strategy for isolated multilevel inverters. This converter has been chosen due to the autonomy of each full bridge. Other advantage is the feasibility of handling the power by cell when there are changes in the batteries state of charge (SOC). In order to take advantage of these benefits, a control strategy has been developed. The main goal of the proposed solution is to change the power produced by each inverter in function of SOC, guaranteeing a proper regulation of the overall power, without affecting the parameters of quality of the output voltage like harmonic distortion and amplitude. The designed solution was tested by power sources variations, finding the control strategy appropriate to accomplish the objective, to modify the power produced by each full bridge in function of SOC without changing overall power of the system and keeping the output voltage constant
    corecore