606 research outputs found

    Electronic instabilities of a Hubbard model approached as a large array of coupled chains: competition between d-wave superconductivity and pseudogap phase

    Get PDF
    We study the electronic instabilities in a 2D Hubbard model where one of the dimensions has a finite width, so that it can be considered as a large array of coupled chains. The finite transverse size of the system gives rise to a discrete string of Fermi points, with respective electron fields that, due to their mutual interaction, acquire anomalous scaling dimensions depending on the point of the string. Using bosonization methods, we show that the anomalous scaling dimensions vanish when the number of coupled chains goes to infinity, implying the Fermi liquid behavior of a 2D system in that limit. However, when the Fermi level is at the Van Hove singularity arising from the saddle points of the 2D dispersion, backscattering and Cooper-pair scattering lead to the breakdown of the metallic behavior at low energies. These interactions are taken into account through their renormalization group scaling, studying in turn their influence on the nonperturbative bosonization of the model. We show that, at a certain low-energy scale, the anomalous electron dimension diverges at the Fermi points closer to the saddle points of the 2D dispersion. The d-wave superconducting correlations become also large at low energies, but their growth is cut off as the suppression of fermion excitations takes place first, extending progressively along the Fermi points towards the diagonals of the 2D Brillouin zone. We stress that this effect arises from the vanishing of the charge stiffness at the Fermi points, characterizing a critical behavior that is well captured within our nonperturbative approach.Comment: 13 pages, 7 figure

    Suppression of electron-electron repulsion and superconductivity in Ultra Small Carbon Nanotubes

    Full text link
    Recently, ultra-small-diameter Single Wall Nano Tubes with diameter of ∌0.4nm \sim 0.4 nm have been produced and many unusual properties were observed, such as superconductivity, leading to a transition temperature Tc∌15oKT_c\sim 15^oK, much larger than that observed in the bundles of larger diameter tubes. By a comparison between two different approaches, we discuss the issue whether a superconducting behavior in these carbon nanotubes can arise by a purely electronic mechanism. The first approach is based on the Luttinger Model while the second one, which emphasizes the role of the lattice and short range interaction, is developed starting from the Hubbard Hamiltonian. By using the latter model we predict a transition temperature of the same order of magnitude as the measured one.Comment: 7 pages, 3 figures, to appear in J. Phys.-Cond. Ma

    Antimicrobial peptide human ÎČ-defensin-2 improves in vitro cellular viability and reduces pro-inflammatory effects induced by enteroinvasive Escherichia coli in Caco-2 cells by inhibiting invasion and virulence factors’ expression

    Get PDF
    Escherichia coli is one of the commensal species most represented in the intestinal microbiota. However, there are some strains that can acquire new virulence factors that enable them to adapt to new intestinal niches. These include enteroinvasive E. coli (EIEC) that is responsible for the bacillary dysentery that causes severe diarrheal symptoms in both children and adults. Due to the increasing onset of antibiotic resistance phenomena, scientific research is focused on the study of other therapeutic approaches for the treatment of bacterial infections. A promising alternative could be represented by antimicrobial peptides (AMPs), that have received widespread attention due to their broad antimicrobial spectrum and low incidence of bacterial resistance. AMPs modulate the immune defenses of the host and regulate the composition of microbiota and the renewal of the intestinal epithelium. With the aim to investigate an alternative therapeutic approach, especially in the case of antibiotic resistance, in this work we created a line of intestinal epithelial cells able to express high concentrations of AMP human ÎČ-defensin-2 (HBD-2) in order to test its ability to interfere with the pathogenicity mechanisms of EIEC. The results showed that HBD-2 is able to significantly reduce the expression of the proinflammatory cytokines by intestinal epithelial cells, the invasiveness ability of EIEC and the expression of invasion-associated genes

    Antimicrobial Peptides Human Beta-Defensin-2 and -3 Protect the Gut During Candida albicans Infections Enhancing the Intestinal Barrier Integrity: In Vitro Study

    Get PDF
    The intestinal mucosa is composed of a monolayer of epithelial cells, which is highly polarized and firmly united to each other thanks to the presence of proteins complexes, called Tight junctions (TJs). Alteration of the mucus layer and TJs causes an increase in intestinal permeability, which can lead to a microbial translocation and systemic disorders. Candida albicans, in addition to its role of commensal, is an opportunistic pathogen responsible for disseminated candidiasis, especially in immunocompromised subjects where the dysbiosis leads to damage of the intestinal mucosal barrier. In this work, we used a line of intestinal epithelial cells able to stably express the genes that encodes human beta defensin-2 (HBD-2) and -3 (HBD-3) to monitor the invasion of C. albicans in vitro. Defensins are a group of antimicrobial peptides (AMPs) found in different living organisms, and are involved in the first line of defense in the innate immune response against pathogens. The results obtained show that the presence of antimicrobial peptides improves the expression of TJs and increases the Trans Epithelial Electrical Resistence value. In addition, the invasive ability of C. albicans in transfected cells is significantly reduced, as well as the expression levels of genes involved in the apoptotic pathway. Through the study of interaction between antimicrobial peptides and microbiota we will be able in the future to better understand the mechanisms by which they exert the host defense function against intestinal pathogens

    Nine years of comparative effectiveness research education and training: initiative supported by the PhRMA Foundation

    Get PDF
    The term comparative effectiveness research (CER) took center stage with passage of the American Recovery and Reinvestment Act (2009). The companion US$1.1 billion in funding prompted the launch of initiatives to train the scientific workforce capable of conducting and using CER. Passage of the Patient Protection and Affordable Care Act (2010) focused these initiatives on patients, coining the term ‘patient-centered outcomes research’ (PCOR). Educational and training initiatives were soon launched. This report describes the initiative of the Pharmaceutical Research and Manufacturers Association of America (PhRMA) Foundation. Through provision of grant funding to six academic Centers of Excellence, to spearheading and sponsoring three national conferences, the PhRMA Foundation has made significant contributions to creation of the scientific workforce that conducts and uses CER/PCOR

    Real-world versus trial patients with transthyretin amyloid cardiomyopathy

    Get PDF
    Transthyretin (TTR) amyloid cardiomyopathy (ATTR‐AC) is caused either by single‐point mutations in the TTR gene (ATTRv‐AC) or by deposition of the wild‐type protein (ATTRwt‐AC).1 Long been considered a rare disease, ATTR‐AC has been increasingly recognized in recent years, particularly among the elderly,1 mostly due to the possibility of a non‐invasive diagnosis through bone scintigraph

    Patient-Centered Core Impacts Sets (PC-CIS): What They Are and What They Are Not

    Get PDF
    Letter to the Editor We are writing regarding the Innovations in Pharmacy commentary entitled, “Evidentiary Standards for Patient-Centered Core Impact Value Claims.”(1) We thank Dr. Langley for commenting on the National Health Council’s work on patient-centered core impact sets (PC-CIS), an initiative spearheaded by the nonprofit organization and its membership with multi-stakeholder representation and input.(2-4) While we have tried to be clear and transparent about the intent of PC-CIS, the commentary made it apparent to us we need to (and will) do more to be explicit about what a PC-CIS is and is not, and its possible downstream uses.  We believe the PC-CIS concept was misrepresented in the commentary and want to provide clarification for readers so they can consider the merits of the initiative for themselves

    Many-body current formula and current conservation for non-equilibrium fully interacting nanojunctions

    Full text link
    We consider the electron transport properties through fully interacting nanoscale junctions beyond the linear-response regime. We calculate the current flowing through an interacting region connected to two interacting leads, with interaction crossing at the left and right contacts, by using a non-equilibrium Green's functions (NEGF) technique. The total current at one interface (the left one for example) is made of several terms which can be regrouped into two sets. The first set corresponds to a very generalised Landauer-like current formula with physical quantities defined only in the interacting central region and with renormalised lead self-energies. The second set characterises inelastic scattering events occurring in the left lead. We show how this term can be negligible or even vanish due to the pseudo-equilibrium statistical properties of the lead in the thermodynamic limit. The expressions for the different Green's functions needed for practical calculations of the current are also provided. We determine the constraints imposed by the physical condition of current conservation. The corresponding equation imposed on the different self-energy quantities arising from the current conservation is derived. We discuss in detail its physical interpretation and its relation with previously derived expressions. Finally several important key features are discussed in relation to the implementation of our formalism for calculations of quantum transport in realistic systems

    W=0 pairing in Hubbard and related models of low-dimensional superconductors

    Full text link
    Lattice Hamiltonians with on-site interaction WW have W=0 solutions, that is, many-body {\em singlet} eigenstates without double occupation. In particular, W=0 pairs give a clue to understand the pairing force in repulsive Hubbard models. These eigenstates are found in systems with high enough symmetry, like the square, hexagonal or triangular lattices. By a general theorem, we propose a systematic way to construct all the W=0 pairs of a given Hamiltonian. We also introduce a canonical transformation to calculate the effective interaction between the particles of such pairs. In geometries appropriate for the CuO2_{2} planes of cuprate superconductors, armchair Carbon nanotubes or Cobalt Oxides planes, the dressed pair becomes a bound state in a physically relevant range of parameters. We also show that W=0 pairs quantize the magnetic flux like superconducting pairs do. The pairing mechanism breaks down in the presence of strong distortions. The W=0 pairs are also the building blocks for the antiferromagnetic ground state of the half-filled Hubbard model at weak coupling. Our analytical results for the 4×44\times 4 Hubbard square lattice, compared to available numerical data, demonstrate that the method, besides providing intuitive grasp on pairing, also has quantitative predictive power. We also consider including phonon effects in this scenario. Preliminary calculations with small clusters indicate that vector phonons hinder pairing while half-breathing modes are synergic with the W=0 pairing mechanism both at weak coupling and in the polaronic regime.Comment: 42 pages, Topical Review to appear in Journal of Physics C: Condensed Matte

    Transdisciplinary unifying implications of circadian findings in the 1950s

    Get PDF
    A few puzzles relating to a small fraction of my endeavors in the 1950s are summarized herein, with answers to a few questions of the Editor-in-Chief, to suggest that the rules of variability in time complement the rules of genetics as a biological variability in space. I advocate to replace truisms such as a relative constancy or homeostasis, that have served bioscience very well for very long. They were never intended, however, to lower a curtain of ignorance over everyday physiology. In raising these curtains, we unveil a range of dynamics, resolvable in the data collection and as-one-goes analysis by computers built into smaller and smaller devices, for a continued self-surveillance of the normal and for an individualized detection of the abnormal. The current medical art based on spotchecks interpreted by reference to a time-unqualified normal range can become a science of time series with tests relating to the individual in inferential statistical terms. This is already doable for the case of blood pressure, but eventually should become possible for many other variables interpreted today only based on the quicksand of clinical trials on groups. These ignore individual differences and hence the individual's needs. Chronomics (mapping time structures) with the major aim of quantifying normalcy by dynamic reference values for detecting earliest risk elevation, also yields the dividend of allowing molecular biology to focus on the normal as well as on the grossly abnormal
    • 

    corecore