7 research outputs found

    Closing gaps for performing a risk assessment on Listeria monocytogenes in ready-to-eat (RTE) foods : activity 3, the comparison of isolates from different compartments along the food chain, and from humans using whole genome sequencing (WGS) analysis

    Get PDF
    We would like to thank all the persons and institutes that have provided the project with isolates and accompanying information. Without them, this project would not have been possible. Lin Cathrine T. Brandal, Norwegian Institute of Public Health, Norway Julio VĂĄzquez Moreno and Raquel Abad Torreblanca, Instituto de Salud Carlos III, Spain Marc Lecuit, Institut Pasteur, France Alexandre Leclercq, Institut Pasteur, France Iva Hristova, National Center of Infectious and Parasitic Diseases, Bulgaria Marija Trkov, National Laboratory of Health, Environment and Food, Slovenia Cecilia Jernberg, Public Health Agency of Sweden, Sweden Ariane Pietzka, Austrian Agency for Health and Food Safety, Austria Eelco Franz and Ingrid Friesema, RIVM, The Netherlands Carlo Spanu, University of Sassari Sardinia Ifip, French Institute for Pig and Pork Industry, Maisons-Alfort, France All the NRLs for providing the isolates from the EU baseline study Special thanks to Sylvain Brisse and Alexandra Moura, Institut Pasteur, France, for providing cgMLST data. The authors would also like to thank the EFSA staff members: Maria Teresa da Silva Felicio, Beatriz Guerra, Ernesto LĂŹebana and Valentina Rizzi as well as the members of the Working Group on Listeria monocytogenes contamination of ready-to-eat foods: Kostas Koutsoumanis, Roland Lindqvist, Moez Sanaa, Panagiotis Skandamis, Niko Speybroek, Johanna Takkinen and Martin Wagner for the support, revisions and suggestions during the development of the present procurement activity and report.Publisher PD

    Martensitic transformations: from continuum mechanics, to spin models and automata

    Get PDF
    We present a new procedure for the systematic reduction of a continuum theory of martensitic transformations to a spin system whose dynamics can be described by an automaton. Our prototypical model reproduces most of the experimental observations in martensites associated with criticality and power-law acoustic emission. In particular, it explains in a natural way why cyclic training is necessary to reach scale-free behavior

    Quality More Than Quantity: The Use of Carbohydrates in High-Fat Diets to Tackle Obesity in Growing Rats.

    No full text
    Childhood obesity prevention is important to avoid obesity and its comorbidities into adulthood. Although the energy density of food has been considered a main obesogenic factor, a focus on food quality rather that the quantity of the different macronutrients is needed. Therefore, this study investigates the effects of changing the quality of carbohydrates from rapidly to slowly digestible carbohydrates on metabolic abnormalities and its impact on obesity in growing rats fed a high-fat diet (HFD). Growing rats were fed on HFD containing carbohydrates with different digestion rates: a HFD containing rapid-digesting carbohydrates (OBE group) or slow-digesting carbohydrates (ISR group), for 4 weeks and the effect on the metabolism and signaling pathways were analyzed in different tissues. Animals from OBE group presented an overweight/obese phenotype with a higher body weight gain and greater accumulation of fat in adipose tissue and liver. This state was associated with an increase of HOMA index, serum diacylglycerols and triacylglycerides, insulin, leptin, and pro-inflammatory cytokines. In contrast, the change of carbohydrate profile in the diet to one based on slow digestible prevented the obesity-related adverse effects. In adipose tissue, GLUT4 was increased and UCPs and PPARÎł were decreased in ISR group respect to OBE group. In liver, GLUT2, FAS, and SRBP1 were lower in ISR group than OBE group. In muscle, an increase of glycogen, GLUT4, AMPK, and Akt were observed in comparison to OBE group. In conclusion, this study demonstrates that the replacement of rapidly digestible carbohydrates for slowly digestible carbohydrates within a high-fat diet promoted a protective effect against the development of obesity and its associated comorbidities

    PEI-NIR Heptamethine Cyanine Nanotheranostics for Tumor Targeted Gene Delivery

    No full text
    Polymer-based nanotheranostics are appealing tools for cancer treatment and diagnosis in the fast-growing field of nanomedicine. A straightforward preparation of novel engineered PEI-based nanotheranostics incorporating NIR fluorescence heptamethine cyanine dyes (NIRF-HC) to enable them with tumor targeted gene delivery capabilities is reported. Branched PEI-2 kDa (b2kPEI) is conjugated with IR-780 and IR-783 dyes by both covalent and noncovalent simple preparative methodologies varying their stoichiometry ratio. The as-prepared set of PEI-NIR-HC nanocarriers are assayed <i>in vitro</i> and <i>in vivo</i> to evaluate their gene transfection efficiency, cellular uptake, cytotoxicity, internalization and trafficking mechanisms, subcellular distribution, and tumor specific gene delivery. The results show the validity of the approach particularly for one of the covalent IR783-b2kPEI conjugates that exhibit an enhanced tumor uptake, probably mediated by organic anion transporting peptides, and favorable intracellular transport to the nucleus. The compound behaves as an efficient nanotheranostic transfection agent in NSG mice bearing melanoma G361 xenographs with concomitant imaging signal and gene concentration in the targeted tumor. By this way, advanced nanotheranostics with multifunctional capabilities (gene delivery, tumor-specific targeting, and NIR fluorescence imaging) are generated in which the NIRF-HC dye component accounts for simultaneous targeting and diagnostics, avoiding additional incorporation of additional tumor-specific targeting bioligands

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore