11 research outputs found

    'Functional' neuroanatomical tract tracing: analysis of changes in gene expression of brain circuits of interest

    No full text
    Neuroanatomical tracing when considered as an isolated method produces relatively straightforward answers. Although single-, double- or even triple-tracing paradigms produce valuable data on the organization of brain circuits, the final outcome often is too simplistic since it is not possible to elucidate the activity of these circuits. In this regard, emerging technologies contribute with additional information about the status of neuronal circuits. The laser-guided capture microdissection microscope (LCM) allows the accurate dissection of small brain areas under the microscope that could be further analyzed for gene expression or proteomics. In order to elucidate the gene expression of a given circuit of interest, we have developed a combination of methods comprising (i) fluorescent non-radioactive in situ hybridization for the detection of vGLUT2 mRNA expression combined with retrograde tracing with Fluoro-Gold (FG; analysis performed under the confocal microscope) and (ii) laser-guided capture microdissection of brain areas containing neurons retrogradely labeled with FG followed by the measurement of changes in mRNA levels encoding for vGLUT2 by real-time PCR. Our goal was to detect changes in gene expression of the thalamostriatal pathway in unilaterally 6-OHDA lesioned rats. Taking advantage of this procedure, we found a three-fold increase in vGLUT2 mRNA expression within thalamic neurons projecting to the dopamine-depleted striatum when compared with the activity of the thalamic neurons innervating the control striatum

    Detection of two different mRNAs in a single section by dual in situ hybridization: a comparison between colorimetric and fluorescent detection

    No full text
    We have compared the performance of two methods designed to simultaneously detect two different mRNAs within a single brain section by dual ISH. Specific mRNA riboprobes labeled with biotin and digoxigenin were simultaneously hybridized and visualized using either brightfield or fluorescence microscopy. For brightfield visualization, the biotin-labeled riboprobe was detected with a peroxidase chromogen, whereas, an alkaline phosphatase substrate was used for the detection of the digoxigenin-labeled riboprobe. Dual fluorescent ISH involved the detection of the biotin-labeled riboprobe with an Alexa((R))488-conjugated streptavidin followed by the visualization of the digoxigenin-labeled riboprobe with the red fluorescent substrate HNPP. The dual ISH protocols presented here offer sensitive methods to detect the expression of two mRNAs of interest, with both colorimetric and fluorescent ISH each having its strengths and limitations. For example, dual colorimetric ISH has proven to be particularly useful to study the distribution of two mRNAs in different brain nuclei, whereas, dual fluorescent ISH has provided better results when studying the co-localization of two different mRNAs in single neurons. The comprehensive step-by-step procedure is presented, together with a troubleshooting section in which the advantages and limitations of these procedures are reviewed in depth. Moreover, alternative protocols for dual ISH were also compared to those presented here

    Expression of the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat thalamus

    No full text
    Vesicular glutamate transporters (VGLUTs) are responsible for glutamate trafficking and for the subsequent regulated release of this excitatory neurotransmitter at the synapse. Three isoforms of the VGLUT have been identified, now known as VGLUT1, VGLUT2, and VGLUT3. Both VGLUT1 and VGLUT2 have been considered definitive markers of glutamatergic neurons, whereas VGLUT3 is expressed in nonglutamatergic neurons such as cholinergic striatal interneurons. It is widely believed that VGLUT1 and VGLUT2 are expressed in a complementary manner at the cortical and thalamic levels, suggesting that these glutamatergic neurons fulfill different physiological functions. In the present work, we analyzed the pattern of VGLUT1 and VGLUT2 mRNA expression at the thalamic level by using single and dual in situ hybridization. In accordance with current beliefs, we found significant expression of VGLUT2 mRNA in all the thalamic nuclei, while moderate expression of VGLUT1 mRNA was consistently found in both the principal relay and the association thalamic nuclei. Interestingly, individual neurons within these nuclei coexpressed both VGLUT1 and VGLUT2 mRNAs, suggesting that these individual thalamic neurons may have different ways of trafficking glutamate. These results call for a reappraisal of the previously held concept regarding the mutually exclusive distribution of VGLUT transporters in the central nervous system

    Consequences of unilateral nigrostriatal denervation on the thalamostriatal pathway in rats

    No full text
    The position of the caudal intralaminar nuclei within basal ganglia circuitry has largely been neglected in most studies dealing with basal ganglia function. During the past few years, there has been a growing body of evidence suggesting that the thalamic parafascicular nucleus in rodents (PF) exerts a multifaceted modulation of basal ganglia nuclei, at different levels. Our aim was to study the activity of the thalamostriatal pathway in rats with unilateral dopaminergic depletion. The experimental approach comprised first unilateral delivery of 6-OHDA in the medial forebrain bundle. Thirty days post-lesioning, animals showing a clear asymmetry were then subjected to bilateral injection of Fluoro-Gold (FG) within the striatum. Subsequently, expression of the mRNA encoding the vesicular glutamate transporter 2 (vGLUT2) was detected within thalamostriatal-projecting neurons (FG-labeled) by in situ hybridization and the results were confirmed by laser-guided capture microdissection microscopy followed by real-time PCR. The data showed that there was a marked neuronal loss restricted to PF neurons projecting to the dopamine-depleted striatum. Moreover, PF neurons innervating the dopamine-depleted striatum were intensely hyperactive. These neurons showed a marked increase on the expression of vGLUT2 mRNA as well as for the mRNA encoding the subunit I of cytochrome oxidase as compared with those neurons projecting to the striatum with normal dopamine content. Thus, the selective neurodegeneration of PF neurons innervating the striatum together with the increased activity of the thalamostriatal pathway coexist after nigrostriatal denervation

    Glutamatergic pallidothalamic projections and their implications in the pathophysiology of Parkinson's disease

    No full text
    GABAergic projections emitted from the entopeduncular nucleus (ENT) and the substantia nigra pars reticulata (SNr) innervate different thalamic nuclei and they are known to be hyperactive after dopaminergic depletion. Here we show that isoform 2 of the vesicular glutamate transporter (VGLUT2) is expressed by neurons in the ENT nucleus but not in the SNr. Indeed, dual in situ hybridization demonstrated that the ENT nucleus contains two different subpopulations of projection neurons, one single-expressing GAD65/67 mRNAs and another one that co-expresses either of the GAD isoforms together with VGLUT2 mRNA. Unilateral dopaminergic depletion induced marked changes in pallidothalamic-projecting neuron gene expression, resulting in increased expression of GAD65/67 mRNAs together with a clear down-regulation of VGLUT2 mRNA expression. Our results indicate that the increased thalamic inhibition typical of dopamine depletion might be explained by a synergistic effect of increased GABA outflow coupled to decreased glutamate levels, both neurotransmitters coming from ENT neurons

    Glutamatergic pallidothalamic projections and their implications in the pathophysiology of Parkinson's disease

    No full text
    GABAergic projections emitted from the entopeduncular nucleus (ENT) and the substantia nigra pars reticulata (SNr) innervate different thalamic nuclei and they are known to be hyperactive after dopaminergic depletion. Here we show that isoform 2 of the vesicular glutamate transporter (VGLUT2) is expressed by neurons in the ENT nucleus but not in the SNr. Indeed, dual in situ hybridization demonstrated that the ENT nucleus contains two different subpopulations of projection neurons, one single-expressing GAD65/67 mRNAs and another one that co-expresses either of the GAD isoforms together with VGLUT2 mRNA. Unilateral dopaminergic depletion induced marked changes in pallidothalamic-projecting neuron gene expression, resulting in increased expression of GAD65/67 mRNAs together with a clear down-regulation of VGLUT2 mRNA expression. Our results indicate that the increased thalamic inhibition typical of dopamine depletion might be explained by a synergistic effect of increased GABA outflow coupled to decreased glutamate levels, both neurotransmitters coming from ENT neurons

    The search for a role of the caudal intralaminar nuclei in the pathophysiology of Parkinson's disease

    No full text
    The situation of the caudal intralaminar thalamic nuclei within basal ganglia circuits has gained increased attention over the past few years. Although initially considered as a "non-specific" thalamic nuclei, tract-tracing studies carried out over the past two decades have demonstrated that the centromedian-parafascicular thalamic complex (CM-Pf) is connected to virtually all basal ganglia components and related nuclei. Although the anatomical basis sustaining the thalamic modulation of basal ganglia circuits has long been characterized, the functional significance of these transverse circuits still remain to be properly accommodated within the basal ganglia model, both under normal conditions as well as in situations of dopaminergic depletion. However, the recent demonstration of primary (e.g., non-dopamine related) neurodegenerative phenomena restricted to the CM-Pf in Parkinson's disease (PD) has renewed interest in the role played by the caudal intralaminar nuclei in the pathophysiology of PD. Concomitantly, evidence has become available of increased metabolic activity in the caudal intralaminar nuclei in rodent models of PD. Finally, CM-Pf neurosurgery in patients suffering from PD has produced contrasting outcomes, indicating that a consensus is still to be reached regarding the potential usefulness of targeting the caudal intralaminar nuclei to treat movement disorders of basal ganglia origin

    The search for a role of the caudal intralaminar nuclei in the pathophysiology of Parkinson's disease

    No full text
    The situation of the caudal intralaminar thalamic nuclei within basal ganglia circuits has gained increased attention over the past few years. Although initially considered as a "non-specific" thalamic nuclei, tract-tracing studies carried out over the past two decades have demonstrated that the centromedian-parafascicular thalamic complex (CM-Pf) is connected to virtually all basal ganglia components and related nuclei. Although the anatomical basis sustaining the thalamic modulation of basal ganglia circuits has long been characterized, the functional significance of these transverse circuits still remain to be properly accommodated within the basal ganglia model, both under normal conditions as well as in situations of dopaminergic depletion. However, the recent demonstration of primary (e.g., non-dopamine related) neurodegenerative phenomena restricted to the CM-Pf in Parkinson's disease (PD) has renewed interest in the role played by the caudal intralaminar nuclei in the pathophysiology of PD. Concomitantly, evidence has become available of increased metabolic activity in the caudal intralaminar nuclei in rodent models of PD. Finally, CM-Pf neurosurgery in patients suffering from PD has produced contrasting outcomes, indicating that a consensus is still to be reached regarding the potential usefulness of targeting the caudal intralaminar nuclei to treat movement disorders of basal ganglia origin

    Safety of hospital discharge before return of bowel function after elective colorectal surgery

    No full text
    Background: Ileus is common after colorectal surgery and is associated with an increased risk of postoperative complications. Identifying features of normal bowel recovery and the appropriateness for hospital discharge is challenging. This study explored the safety of hospital discharge before the return of bowel function.Methods: A prospective, multicentre cohort study was undertaken across an international collaborative network. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The main outcome of interest was readmission to hospital within 30 days of surgery. The impact of discharge timing according to the return of bowel function was explored using multivariable regression analysis. Other outcomes were postoperative complications within 30 days of surgery, measured using the Clavien-Dindo classification system.Results: A total of 3288 patients were included in the analysis, of whom 301 (9.2 per cent) were discharged before the return of bowel function. The median duration of hospital stay for patients discharged before and after return of bowel function was 5 (i.q.r. 4-7) and 7 (6-8) days respectively (P < 0.001). There were no significant differences in rates of readmission between these groups (6.6 versus 8.0 per cent; P = 0.499), and this remained the case after multivariable adjustment for baseline differences (odds ratio 0.90, 95 per cent c.i. 0.55 to 1.46; P = 0.659). Rates of postoperative complications were also similar in those discharged before versus after return of bowel function (minor: 34.7 versus 39.5 per cent; major 3.3 versus 3.4 per cent; P = 0.110).Conclusion: Discharge before return of bowel function after elective colorectal surgery appears to be safe in appropriately selected patients

    Timing of nasogastric tube insertion and the risk of postoperative pneumonia: an international, prospective cohort study

    No full text
    Aim: Aspiration is a common cause of pneumonia in patients with postoperative ileus. Insertion of a nasogastric tube (NGT) is often performed, but this can be distressing. The aim of this study was to determine whether the timing of NGT insertion after surgery (before versus after vomiting) was associated with reduced rates of pneumonia in patients undergoing elective colorectal surgery. Method: This was a preplanned secondary analysis of a multicentre, prospective cohort study. Patients undergoing elective colorectal surgery between January 2018 and April 2018 were eligible. Those receiving a NGT were divided into three groups, based on the timing of the insertion: routine NGT (inserted at the time of surgery), prophylactic NGT (inserted after surgery but before vomiting) and reactive NGT (inserted after surgery and after vomiting). The primary outcome was the development of pneumonia within 30 days of surgery, which was compared between the prophylactic and reactive NGT groups using multivariable regression analysis. Results: A total of 4715 patients were included in the analysis and 1536 (32.6%) received a NGT. These were classified as routine in 926 (60.3%), reactive in 461 (30.0%) and prophylactic in 149 (9.7%). Two hundred patients (4.2%) developed pneumonia (no NGT 2.7%; routine NGT 5.2%; reactive NGT 10.6%; prophylactic NGT 11.4%). After adjustment for confounding factors, no significant difference in pneumonia rates was detected between the prophylactic and reactive NGT groups (odds ratio 1.03, 95% CI 0.56–1.87, P = 0.932). Conclusion: In patients who required the insertion of a NGT after surgery, prophylactic insertion was not associated with fewer cases of pneumonia within 30 days of surgery compared with reactive insertion
    corecore