83 research outputs found

    Sequential biventricular pacing improves regional contractility, longitudinal function and dyssynchrony in patients with heart failure and prolonged QRS

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>Biventricular pacing (BiP) is an effective treatment in systolic heart failure (HF) patients with prolonged QRS. However, approximately 35% of the patients receiving BiP are classified as non-responders. The aim of this study is to evaluate the acute effects of VV-optimization on systolic heart function.</p> <p>Methods</p> <p>Twenty-one HF patients aged 72 (46-88) years, QRS 154 (120-190) ms, were studied with echocardiography, Tissue Doppler Imaging (TDI) and 3D-echo the first day after receiving a BiP device. TDI was performed; during simultaneous pacing (LV-lead pacing 4 ms before the RV-lead) and during sequential pacing (LV 20 and 40 ms before RV and RV 20 and 40 ms before LV-lead pacing). Systolic heart function was studied by tissue tracking (TT) for longitudinal function and systolic maximal velocity (SMV) for regional contractility and signs of dyssynchrony assessed by time-delays standard deviation of aortic valve opening to SMV, AVO-SMV/SD and tissue synchronization imaging (TSI).</p> <p>Results</p> <p>The TT mean value preoperatively was 4,2 ± 1,5 and increased at simultaneous pacing to 5,0 ± 1,2 mm (p < 0,05), and at best VV-interval to 5,4 ± 1,2 (p < 0,001). Simultaneous pacing achieved better TT distance compared with preoperative in 16 patients (76%). However, it was still higher after VV-optimization in 12 patients 57%. Corresponding figures for SMV were 3,0 ± 0,7, 3,5 ± 0,8 (p < 0,01), and 3,6 ± 0,8 (p < 0,001). Also dyssynchrony improved.</p> <p>Conclusions</p> <p>VV-optimization in the acute phase improves systolic heart function more than simultaneous BiP pacing. Long-term effects should be evaluated in prospective randomized trials.</p

    Assessment of mitral bioprostheses using cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The orifice area of mitral bioprostheses provides important information regarding their hemodynamic performance. It is usually calculated by transthoracic echocardiography (TTE), however, accurate and reproducible determination may be challenging. Cardiovascular magnetic resonance (CMR) has been proven as an accurate alternative for assessing aortic bioprostheses. However, whether CMR can be similarly applied for bioprostheses in the mitral position, particularly in the presence of frequently coincident arrhythmias, is unclear. The aim of the study is to test the feasibility of CMR to evaluate the orifice area of mitral bioprostheses.</p> <p>Methods</p> <p>CMR planimetry was performed in 18 consecutive patients with mitral bioprostheses (n = 13 Hancock<sup>®</sup>, n = 4 Labcore<sup>®</sup>, n = 1 Perimount<sup>®</sup>; mean time since implantation 4.5 ± 3.9 years) in an imaging plane perpendicular to the transprosthetic flow using steady-state free-precession cine imaging under breath-hold conditions on a 1.5T MR system. CMR results were compared with pressure half-time derived orifice areas obtained by TTE.</p> <p>Results</p> <p>Six subjects were in sinus rhythm, 11 in atrial fibrillation, and 1 exhibited frequent ventricular extrasystoles. CMR image quality was rated as good in 10, moderate in 6, and significantly impaired in 2 subjects. In one prosthetic type (Perimount<sup>®</sup>), strong stent artifacts occurred. Orifice areas by CMR (mean 2.1 ± 0.3 cm<sup>2</sup>) and TTE (mean 2.1 ± 0.3 cm<sup>2</sup>) correlated significantly (r = 0.94; p < 0.001). Bland-Altman analysis showed a 95% confidence interval from -0.16 to 0.28 cm<sup>2 </sup>(mean difference 0.06 ± 0.11 cm<sup>2</sup>; range -0.1 to 0.3 cm<sup>2</sup>). Intra- and inter-observer variabilities of CMR planimetry were 4.5 ± 2.9% and 7.9 ± 5.2%.</p> <p>Conclusions</p> <p>The assessment of mitral bioprostheses using CMR is feasible even in those with arrhythmias, providing orifice areas with close agreement to echocardiography and low observer dependency. Larger samples with a greater variety of prosthetic types and more cases of prosthetic dysfunction are required to confirm these preliminary results.</p

    γ-Synucleinopathy: neurodegeneration associated with overexpression of the mouse protein

    Get PDF
    The role of α-synuclein in pathogenesis of familial and idiopathic forms of Parkinson’s disease, and other human disorders known as α-synucleinopathies, is well established. In contrast, the involvement of two other members of the synuclein family, β-synuclein and γ-synuclein, in the development and progression of neurodegeneration is poorly studied. However, there is a growing body of evidence that α-synuclein and β-synuclein have opposite neuropathophysiological effects. Unlike α-synuclein, overexpressed β-synuclein does not cause pathological changes in the nervous system of transgenic mice and even ameliorates the pathology caused by overexpressed α-synuclein. To assess the consequences of excess expression of the third family member, γ-synuclein, on the nervous system we generated transgenic mice expressing high levels of mouse γ-synuclein under control of Thy-1 promoter. These animals develop severe age- and transgene dose-dependent neuropathology, motor deficits and die prematurely. Histopathological changes include aggregation of γ-synuclein, accumulation of various inclusions in neuronal cell bodies and processes, and astrogliosis. These changes are seen throughout the nervous system but are most prominent in the spinal cord where they lead to loss of spinal motor neurons. Our data suggest that down-regulation of small heat shock protein HSPB1 and disintegration of neurofilament network play a role in motor neurons dysfunction and death. These findings demonstrate that γ-synuclein can be involved in neuropathophysiological changes and the death of susceptible neurons suggesting the necessity of further investigations of the potential role of this synuclein in disease

    Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-ischemic dilated cardiomyopathy (DCM) is the most common cardiomyopathy worldwide, with significant mortality. Correct evaluation of the patient's myocardial function has important clinical significance in the diagnosis, therapeutic effect assessment and prognosis in non-ischemic DCM patients. This study evaluated the feasibility of three-dimensional speckle tracking imaging (3D-STE) for assessment of the left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy (DCM).</p> <p>Methods</p> <p>Apical full-volume images were acquired from 65 patients with non-ischemic DCM (DCM group) and 59 age-matched normal controls (NC group), respectively. The following parameters were measured by 3D-STE: the peak systolic radial strain (RS), circumferential strain (CS), longitudinal strain (LS) of each segment. Then all the parameters were compared between the two groups.</p> <p>Results</p> <p>The peak systolic strain in different planes had certain regularities in normal groups, radial strain (RS) was the largest in the mid region, the smallest in the apical region, while circumferential strain (CS) and longitudinal strain (LS) increased from the basal to the apical region. In contrast, the regularity could not be applied to the DCM group. RS, CS, LS were significantly decreased in DCM group as compared with NC group (<it>P </it>< 0.001 for all). The interobserver, intraobserver and test-retest reliability were acceptable.</p> <p>Conclusions</p> <p>3D-STE is a reliable tool for evaluation of left ventricular myocardial strain in patients with non-ischemic DCM, with huge advantage in clinical application.</p

    Therapeutic decision-making for patients with fluctuating mitral regurgitation

    Get PDF
    Mitral regurgitation (MR) is a common, progressive, and difficult-to-manage disease. MR is dynamic in nature, with physiological fluctuations occurring in response to various stimuli such as exercise and ischaemia, which can precipitate the development of symptoms and subsequent cardiac events. In both chronic primary and secondary MR, the dynamic behaviour of MR can be reliably examined during stress echocardiography. Dynamic fluctuation of MR can also have prognostic value; patients with a marked increase in regurgitant volume or who exhibit increased systolic pulmonary artery pressure during exercise have lower symptom-free survival than those who do not experience significant changes in MR and systolic pulmonary artery pressure during exercise. Identifying patients who have dynamic MR, and understanding the mechanisms underlying the condition, can potentially influence revascularization strategies (such as the surgical restoration of coronary blood flow) and interventional treatment (including cardiac resynchronization therapy and new approaches targeted to the mitral valve)

    Customized Treatment in Non-Small-Cell Lung Cancer Based on EGFR Mutations and BRCA1 mRNA Expression

    Get PDF
    BACKGROUND: Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC) treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. METHODOLOGY/PRINCIPAL FINDINGS: We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1 levels (hazard ratio, 1.3 [95% CI, 1-1.7]; P = 0.05). CONCLUSIONS/SIGNIFICANCE: Chemotherapy customized according to BRCA1 expression levels is associated with excellent median and 2-year survival for some subsets of NSCLC patients , and RAP80 could play a crucial modulating effect on this model of customized chemotherapy. TRIAL REGISTRATION: (ClinicalTrials.gov) NCT00883480

    2019 ESC/EAS guidelines for the management of dyslipidaemias : Lipid modification to reduce cardiovascular risk

    Get PDF
    Correction: Volume: 292 Pages: 160-162 DOI: 10.1016/j.atherosclerosis.2019.11.020 Published: JAN 2020Peer reviewe

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore